Towards a Calculus of Echo State Networks

被引:7
|
作者
Goudarzi, Alireza [1 ]
Stefanovic, Darko [1 ]
机构
[1] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
Reservoir computing; echo state networks; analytical training; Wiener filters; dynamics; MEMORY; COMPUTATION;
D O I
10.1016/j.procs.2014.11.101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reservoir computing is a recent trend in neural networks which uses dynamical perturbations in the phase space of a system to compute a desired target function. We show one can formulate an expectation of system performance in a simple model of reservoir computing called echo state networks. In contrast with previous theoretical frameworks, which uses annealed approximation, we calculate the exact optimal output weights as a function of the structure of the system and the properties of the input and the target function. Our calculation agrees with numerical simulations. To the best of our knowledge this work presents the first exact analytical solution to optimal output weights in echo state networks.
引用
下载
收藏
页码:176 / 181
页数:6
相关论文
共 50 条
  • [31] Echo State Networks with Sparse Output Connections
    Kobialka, Hans-Ulrich
    Kayani, Umer
    ARTIFICIAL NEURAL NETWORKS-ICANN 2010, PT I, 2010, 6352 : 356 - 361
  • [32] A wavelet perspective on deterministic echo state networks
    Sun, Xiaochuan
    Li, Shujie
    Li, Zhigang
    Xu, Bin
    Zhu, Kaiyu
    Journal of Information and Computational Science, 2015, 12 (04): : 1639 - 1646
  • [33] Predicting Player Churn with Echo State Networks
    Sifa, Rafet
    2021 IEEE CONFERENCE ON GAMES (COG), 2021, : 1061 - 1065
  • [34] Decoupled echo state networks with lateral inhibition
    Xue, Yanbo
    Yang, Le
    Haykin, Simon
    NEURAL NETWORKS, 2007, 20 (03) : 365 - 376
  • [35] Reservoir Topology in Deep Echo State Networks
    Gallicchio, Claudio
    Micheli, Alessio
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 62 - 75
  • [36] Echo state networks for modeling turbulent convection
    Mohammad Sharifi Ghazijahani
    Christian Cierpka
    Scientific Reports, 14 (1)
  • [37] Physics-informed echo state networks
    Doan, N. A. K.
    Polifke, W.
    Magri, L.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 47
  • [38] Prediction of lane change by echo state networks
    Griesbach, K.
    Hoffmann, K. H.
    Beggiato, M.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 121
  • [39] A NEAT Way for Evolving Echo State Networks
    Chatzidimitriou, Kyriakos C.
    Mitkas, Pericles A.
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 909 - 914
  • [40] Echo State Networks for Named Entity Recognition
    Ramamurthy, Rajkumar
    Stenzel, Robin
    Sifa, Rafet
    Ladi, Anna
    Bauckhage, Christian
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 110 - 120