Decay rates of the compressible quantum magnetohydrodynamic model

被引:5
|
作者
Xi, Xiaoyu [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
Decay rates; Quantum magnetohydrodynamic model; Energy method; NAVIER-STOKES EQUATIONS; LONG-TIME BEHAVIOR; CONVERGENCE-RATES; GLOBAL EXISTENCE; SMOOTH SOLUTIONS;
D O I
10.1016/j.jmaa.2019.02.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, decay rates of the compressible viscous quantum magnetohy-drodynamic model in three-dimensional whole space are studied. By using a general energy method, the time decay rates for higher-order spatial derivatives of density, velocity and magnetic field are established when the initial perturbation belongs to H(over dot)(-s) with 0 <= s < 3/2. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:403 / 422
页数:20
相关论文
共 50 条
  • [21] Global well-posedness of the compressible quantum magnetohydrodynamic model with small initial energy
    Ying Yang
    Yu Zhou
    Canze Zhu
    Boundary Value Problems, 2022
  • [22] Global well-posedness of the compressible quantum magnetohydrodynamic model with small initial energy
    Yang, Ying
    Zhou, Yu
    Zhu, Canze
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [23] OPTIMAL CONVERGENCE RATES OF THE MAGNETOHYDRODYNAMIC MODEL FOR QUANTUM PLASMAS WITH POTENTIAL FORCE
    Xu, Xiuli
    Pu, Xueke
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (02): : 987 - 1010
  • [24] The sharp time-decay rates for one-dimensional compressible isentropic Navier-Stokes and magnetohydrodynamic flows
    Chen, Yuhui
    Li, Minling
    Yao, Qinghe
    Yao, Zheng-an
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (03) : 475 - 502
  • [25] The sharp time-decay rates for one-dimensional compressible isentropic Navier-Stokes and magnetohydrodynamic flows
    Yuhui Chen
    Minling Li
    Qinghe Yao
    Zheng-an Yao
    Science China Mathematics, 2023, 66 : 475 - 502
  • [26] The sharp time-decay rates for one-dimensional compressible isentropic Navier-Stokes and magnetohydrodynamic flows
    Yuhui Chen
    Minling Li
    Qinghe Yao
    Zheng-an Yao
    ScienceChina(Mathematics), 2023, 66 (03) : 475 - 502
  • [27] Optimal decay rates of a nonconservative compressible two-phase fluid model
    Wang, Huaqiao
    Wang, Juan
    Wu, Guochun
    Zhang, Yinghui
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (08):
  • [28] Time decay rates for the compressible viscoelastic flows
    Wu, Guochun
    Gao, Zhensheng
    Tan, Zhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) : 990 - 1004
  • [29] Optimal decay rates for the compressible viscoelastic flows
    Li, Yin
    Wei, Ruiying
    Yao, Zheng-an
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (11)
  • [30] Long-time behavior of solutions for the compressible quantum magnetohydrodynamic model in R3
    Xi, Xiaoyu
    Pu, Xueke
    Guo, Boling
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):