Modularity of a certain Calabi-Yau threefold and combinatorial congruences

被引:1
|
作者
Mortenson, E [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
来源
RAMANUJAN JOURNAL | 2006年 / 11卷 / 01期
关键词
Calabi-Yau threefold; modular forms; trace formula;
D O I
10.1007/s11139-006-5305-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a certain Calabi-Yau threefold is modular in the sense that the number of points on its reduction modulo p is expressed in terms of the pth coefficient of a weight 4 newform in S-4(Gamma(0)(6)). We also give a mod p(2) combinatorial expression for these coefficients.
引用
收藏
页码:5 / 39
页数:35
相关论文
共 50 条
  • [31] MODULARITY OF SOME NONRIGID DOUBLE OCTIC CALABI-YAU THREEFOLDS
    Cynk, Slawomir
    Meyer, Christian
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (06) : 1937 - 1958
  • [32] Modularity, Calabi-Yau geometry and 2d CFTs
    Keller, Christoph A.
    STRING-MATH 2013, 2014, 88 : 307 - 316
  • [33] Hilbert modularity of some double octic Calabi-Yau threefolds
    Cynk, Slawomir
    Schuett, Matthias
    van Straten, Duco
    JOURNAL OF NUMBER THEORY, 2020, 210 : 313 - 332
  • [34] The modularity conjecture for rigid Calabi-Yau threefolds over Q
    Saito, MH
    Yui, N
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2001, 41 (02): : 403 - 419
  • [35] Modularity of a nonrigid Calabi-Yau manifold with bad reduction at 13
    Kapustka, Grzegorz
    Kapustka, Michal
    ANNALES POLONICI MATHEMATICI, 2007, 90 (01) : 89 - 98
  • [36] The Euler number of certain primitive Calabi-Yau threefolds
    Chang, MC
    Kim, H
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 : 79 - 86
  • [37] A Global Torelli Theorem for Certain Calabi-Yau Threefolds
    Sheng, Mao
    Xu, Jinxing
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024, 12 (01) : 91 - 112
  • [38] AUTOMORPHISMS AND THE KAHLER CONE OF CERTAIN CALABI-YAU MANIFOLDS
    GRASSI, A
    MORRISON, DR
    DUKE MATHEMATICAL JOURNAL, 1993, 71 (03) : 831 - 838
  • [39] Topological String Theory on Compact Calabi-Yau: Modularity and Boundary Conditions
    Huang, M. -x.
    Klemm, A.
    Quackenbush, S.
    HOMOLOGICAL MIRROR SYMMETRY: NEW DEVELOPMENTS AND PERSPECTIVES, 2009, 757 : 45 - 102
  • [40] A Global Torelli Theorem for Certain Calabi-Yau Threefolds
    Mao Sheng
    Jinxing Xu
    Communications in Mathematics and Statistics, 2024, 12 : 91 - 112