Generation of ice states through deep reinforcement learning

被引:9
|
作者
Zhao, Kai-Wen [1 ,2 ]
Kao, Wen-Han [1 ,2 ]
Wu, Kai-Hsin [1 ,2 ]
Kao, Ying-Jer [1 ,2 ,3 ,4 ,5 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10607, Taiwan
[2] Natl Taiwan Univ, Ctr Theoret Phys, Taipei 10607, Taiwan
[3] Natl Tsing Hua Univ, Natl Ctr Theoret Sci, Hsinchu 30013, Taiwan
[4] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[5] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
ENTROPY; GAME; GO;
D O I
10.1103/PhysRevE.99.062106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a deep reinforcement learning framework where a machine agent is trained to search for a policy to generate a ground state for the square ice model by exploring the physical environment. After training, the agent is capable of proposing a sequence of local moves to achieve the goal. Analysis of the trained policy and the state value function indicates that the ice rule and loop-closing condition are learned without prior knowledge. We test the trained policy as a sampler in the Markov chain Monte Carlo and benchmark against the baseline loop algorithm. This framework can be generalized to other models with topological constraints where generation of constraint-preserving states is difficult.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Cooperative Emergent Swarming Through Deep Reinforcement Learning
    Lin, Tony X.
    Lofaro, Daniel M.
    Sofge, Donald A.
    [J]. 2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1354 - 1359
  • [32] Universal quantum control through deep reinforcement learning
    Murphy Yuezhen Niu
    Sergio Boixo
    Vadim N. Smelyanskiy
    Hartmut Neven
    [J]. npj Quantum Information, 5
  • [33] Maintaining flexibility in smart grid consumption through deep learning and deep reinforcement learning☆
    Gallego, Fernando
    Martin, Cristian
    Diaz, Manuel
    Garrido, Daniel
    [J]. ENERGY AND AI, 2023, 13
  • [34] Connectivity conservation planning through deep reinforcement learning
    Equihua, Julian
    Beckmann, Michael
    Seppelt, Ralf
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (04): : 779 - 790
  • [35] Efficient Novelty Search Through Deep Reinforcement Learning
    Shi, Longxiang
    Li, Shijian
    Zheng, Qian
    Yao, Min
    Pan, Gang
    [J]. IEEE ACCESS, 2020, 8 : 128809 - 128818
  • [36] Robust Deep Reinforcement Learning through Adversarial Loss
    Oikarinen, Tuomas
    Zhang, Wang
    Megretski, Alexandre
    Daniel, Luca
    Weng, Tsui-Wei
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Optimization of district heating generation through reinforcement learning
    Feldmann, Mark
    Rademaker, Thorsten
    [J]. Euroheat and Power/Fernwarme International, 2022, 51 (09): : 22 - 23
  • [38] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Morales, Eduardo F.
    Murrieta-Cid, Rafael
    Becerra, Israel
    Esquivel-Basaldua, Marco A.
    [J]. INTELLIGENT SERVICE ROBOTICS, 2021, 14 (05) : 773 - 805
  • [39] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Eduardo F. Morales
    Rafael Murrieta-Cid
    Israel Becerra
    Marco A. Esquivel-Basaldua
    [J]. Intelligent Service Robotics, 2021, 14 : 773 - 805
  • [40] A learning method for AUV collision avoidance through deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Wu, Di
    Cui, Yunfei
    Yan, Zheping
    Du, Xue
    [J]. OCEAN ENGINEERING, 2022, 260