Dielectrophoresis force spectroscopy for colloidal clusters

被引:11
|
作者
Park, Hyunjoo [1 ,2 ]
Wei, Ming-Tzo [3 ]
Ou-Yang, H. Daniel [1 ,3 ,4 ]
机构
[1] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA
[2] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
[3] Lehigh Univ, Bioengn Program, Bethlehem, PA 18015 USA
[4] Lehigh Univ, Inst Emuls Polymers, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
ACEO flow; Colloidal clusters; Crossover frequency; Dielectrophoresis; Optical trapping; PMMA; SEPARATION; PARTICLES; CONDUCTANCE; DISPERSION;
D O I
10.1002/elps.201100643
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical trapping-based force spectroscopy was used to measure the frequency-dependent DEP forces and DEP crossover frequencies of colloidal polymethyl methacrylate spheres and clusters. A single sphere or cluster, held by an optical tweezer, was positioned near the center of a pair of gold-film electrodes where alternating current elecroosmosis flow was negligible. Use of amplitude modulation and phase-sensitive lock-in detection for accurate measurement of the DEP force yielded new insight into dielectric relaxation mechanisms near the crossover frequencies. On one hand, the size dependence of the DEP force near the crossover frequencies indicates that the dominant polarization mechanism is a volume effect. On the other hand, the power-law dependence of the crossover frequency on the particle radius with an exponent of 2 indicates the dielectric relaxation is more likely because of ionic diffusion across the particle surface, suggesting the dominant polarization mechanism may be a surface polarization effect. Better theories are needed to explain the experiment. Nevertheless, the strong size dependence of the crossover frequencies suggests the use of DEP for size sorting of micron-sized particles.
引用
收藏
页码:2491 / 2497
页数:7
相关论文
共 50 条
  • [31] Clusters of amphiphilic colloidal spheres
    Hong, Liang
    Cacciuto, Angelo
    Luijten, Erik
    Granick, Steve
    Langmuir, 24 (03): : 621 - 625
  • [32] Nucleotide Identification in DNA Using Dielectrophoresis Spectroscopy
    Gudagunti, Fleming Dackson
    Velmanickam, Logeeshan
    Nawarathna, Dharmakeerthi
    Lima, Ivan T., Jr.
    MICROMACHINES, 2020, 11 (01)
  • [33] Rapid Synthesis of Colloidal Clusters
    不详
    PLATINUM METALS REVIEW, 2001, 45 (01) : 11 - 11
  • [34] Comparison of different force calculation methods in DC dielectrophoresis
    Kurgan, Eugeniusz
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (08): : 11 - 14
  • [35] Clusters and Colloidal Metals in Catalysi
    I. I. Moiseev
    M. N. Vargaftik
    Russian Journal of General Chemistry, 2002, 72 : 512 - 522
  • [36] Capillary force on an 'inert' colloid: a physical analogy to dielectrophoresis
    Barakat, Joseph M.
    Squires, Todd M.
    SOFT MATTER, 2021, 17 (12) : 3417 - 3442
  • [37] Identifying Clusters and/or Small-Size Quantum Dots in Colloidal CdSe Ensembles with Optical Spectroscopy
    Li, Lijia
    Zhang, Meng
    Rowell, Nelson
    Kreouzis, Theo
    Fan, Hongsong
    Yu, Qiyu
    Huang, Wen
    Chen, Xiaoqin
    Yu, Kui
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (20): : 6399 - 6408
  • [38] PRELIMINARY INVESTIGATION OF THE EFFECT OF DIELECTROPHORESIS ON COLLOIDAL TRANSPORT AND DEPOSITION IN EVAPORATING DROPLETS
    Li, Xi
    Maki, Kara L.
    Schertzer, Michael J.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 7, 2019,
  • [39] Deflection of sliding droplets by dielectrophoresis force on a superhydrophobic surface
    Bai, Yun-Han
    Chiu, Shih-Yuan
    Jiang, Hong-Ren
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] Blood Cell Tracing in a Microchannel by Using Dielectrophoresis Force
    Othman, Nur Tantiyani Ali
    Kalam, Farah Syafiqah Abul
    JURNAL KEJURUTERAAN, 2021, 33 (01): : 55 - 61