Dielectrophoresis force spectroscopy for colloidal clusters

被引:11
|
作者
Park, Hyunjoo [1 ,2 ]
Wei, Ming-Tzo [3 ]
Ou-Yang, H. Daniel [1 ,3 ,4 ]
机构
[1] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA
[2] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
[3] Lehigh Univ, Bioengn Program, Bethlehem, PA 18015 USA
[4] Lehigh Univ, Inst Emuls Polymers, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
ACEO flow; Colloidal clusters; Crossover frequency; Dielectrophoresis; Optical trapping; PMMA; SEPARATION; PARTICLES; CONDUCTANCE; DISPERSION;
D O I
10.1002/elps.201100643
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical trapping-based force spectroscopy was used to measure the frequency-dependent DEP forces and DEP crossover frequencies of colloidal polymethyl methacrylate spheres and clusters. A single sphere or cluster, held by an optical tweezer, was positioned near the center of a pair of gold-film electrodes where alternating current elecroosmosis flow was negligible. Use of amplitude modulation and phase-sensitive lock-in detection for accurate measurement of the DEP force yielded new insight into dielectric relaxation mechanisms near the crossover frequencies. On one hand, the size dependence of the DEP force near the crossover frequencies indicates that the dominant polarization mechanism is a volume effect. On the other hand, the power-law dependence of the crossover frequency on the particle radius with an exponent of 2 indicates the dielectric relaxation is more likely because of ionic diffusion across the particle surface, suggesting the dominant polarization mechanism may be a surface polarization effect. Better theories are needed to explain the experiment. Nevertheless, the strong size dependence of the crossover frequencies suggests the use of DEP for size sorting of micron-sized particles.
引用
收藏
页码:2491 / 2497
页数:7
相关论文
共 50 条
  • [1] Dielectrophoresis force spectroscopy for colloidal nanoparticles (Conference Presentation)
    Ou-Yang, H. Daniel
    Huang, Hao
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XIII, 2016, 9922
  • [2] A novel dielectrophoresis potential spectroscopy for colloidal nanoparticles
    Huang, Hao
    Ou-Yang, H. Daniel
    ELECTROPHORESIS, 2017, 38 (12) : 1609 - 1616
  • [3] Diamond Colloidal Probe Force Spectroscopy
    Knittel, Peter
    Yoshikawa, Taro
    Nebel, Christoph E.
    ANALYTICAL CHEMISTRY, 2019, 91 (09) : 5537 - 5541
  • [4] THE DIELECTROPHORESIS FORCE
    BENGUIGUI, L
    LIN, IJ
    AMERICAN JOURNAL OF PHYSICS, 1986, 54 (05) : 447 - 450
  • [5] Theory of dielectrophoresis in colloidal suspensions
    Dong, L.
    Huang, J.P.
    Yu, K.W.
    Journal of Applied Physics, 2004, 95 (12): : 8321 - 8326
  • [6] Theory of dielectrophoresis in colloidal suspensions
    Dong, L
    Huang, JP
    Yu, KW
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (12) : 8321 - 8326
  • [7] Dielectrophoresis of charged colloidal suspensions
    Huang, JP
    Karttunen, M
    Yu, KW
    Dong, L
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [8] APPLICATIONS OF DIELECTROPHORESIS TO THE STUDY OF COLLOIDAL SUSPENSIONS
    BURT, JPH
    PETHIG, R
    ELECTRIC FIELD PHENOMENA IN BIOLOGICAL SYSTEMS, 1989, 21 : 15 - 26
  • [9] Biaxial Dielectrophoresis Force Spectroscopy: A Stoichiometric Approach for Examining Intermolecular Weak Binding Interactions
    Park, In Soo
    Kwak, Tae Joon
    Lee, Gyudo
    Son, Myeonggu
    Choi, Jeong Woo
    Choi, Seungyeop
    Nam, Kihwan
    Lee, Sei-Young
    Chang, Woo-Jin
    Eom, Kilho
    Yoon, Dae Sung
    Lee, Sangyoup
    Bashir, Rashid
    Lee, Sang Woo
    ACS NANO, 2016, 10 (04) : 4011 - 4019
  • [10] Continuous separation of colloidal particles using dielectrophoresis
    Yunus, Nurul Amziah Md.
    Nili, Hossein
    Green, Nicolas G.
    ELECTROPHORESIS, 2013, 34 (07) : 969 - 978