Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa

被引:150
|
作者
Tong, Chaobo [1 ]
Wang, Xiaowu [2 ]
Yu, Jingyin [1 ]
Wu, Jian [2 ]
Li, Wanshun [3 ]
Huang, Junyan [1 ]
Dong, Caihua [1 ]
Hua, Wei [1 ]
Liu, Shengyi [1 ]
机构
[1] Chinese Acad Agr Sci, Minist Agr, Oil Crops Res Inst, Key Lab Biol & Genet Improvement Oil Crops, Wuhan 430062, Peoples R China
[2] Chinese Acad Agr Sci, Inst Vegetables & Flowers, Key Lab Biol & Genet Improvement Hort Crops, Minist Agr, Beijing 10081, Peoples R China
[3] Beijing Genome Inst Shenzhen, Shenzhen 518083, Peoples R China
来源
BMC GENOMICS | 2013年 / 14卷
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Brassica rapa; RNA-seq; Alternative splicing; Transcriptome; ALTERNATIVE SPLICING PATTERNS; GENOME-WIDE ANALYSIS; WHOLE-GENOME; FACTOR GENES; ARABIDOPSIS; DUPLICATION; DIVERGENCE; LANDSCAPE; EVENTS; TOPHAT;
D O I
10.1186/1471-2164-14-689
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The species Brassica rapa (2n=20, AA) is an important vegetable and oilseed crop, and serves as an excellent model for genomic and evolutionary research in Brassica species. With the availability of whole genome sequence of B. rapa, it is essential to further determine the activity of all functional elements of the B. rapa genome and explore the transcriptome on a genome-wide scale. Here, RNA-seq data was employed to provide a genome-wide transcriptional landscape and characterization of the annotated and novel transcripts and alternative splicing events across tissues. Results: RNA-seq reads were generated using the Illumina platform from six different tissues (root, stem, leaf, flower, silique and callus) of the B. rapa accession Chiifu-401-42, the same line used for whole genome sequencing. First, these data detected the widespread transcription of the B. rapa genome, leading to the identification of numerous novel transcripts and definition of 5'/3' UTRs of known genes. Second, 78.8% of the total annotated genes were detected as expressed and 45.8% were constitutively expressed across all tissues. We further defined several groups of genes: housekeeping genes, tissue-specific expressed genes and co-expressed genes across tissues, which will serve as a valuable repository for future crop functional genomics research. Third, alternative splicing (AS) is estimated to occur in more than 29.4% of intron-containing B. rapa genes, and 65% of them were commonly detected in more than two tissues. Interestingly, genes with high rate of AS were over-represented in GO categories relating to transcriptional regulation and signal transduction, suggesting potential importance of AS for playing regulatory role in these genes. Further, we observed that intron retention (IR) is predominant in the AS events and seems to preferentially occurred in genes with short introns. Conclusions: The high-resolution RNA-seq analysis provides a global transcriptional landscape as a complement to the B. rapa genome sequence, which will advance our understanding of the dynamics and complexity of the B. rapa transcriptome. The atlas of gene expression in different tissues will be useful for accelerating research on functional genomics and genome evolution in Brassica species.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] RNA-seq analysis of the C. briggsae transcriptome
    Uyar, Bora
    Chu, Jeffrey S. C.
    Vergara, Ismael A.
    Chua, Shu Yi
    Jones, Martin R.
    Wong, Tammy
    Baillie, David L.
    Chen, Nansheng
    GENOME RESEARCH, 2012, 22 (08) : 1567 - 1580
  • [32] Transcriptome analysis of wheat grain using RNA-Seq
    Liu WEI
    Zhihui WU
    Yufeng ZHANG
    Dandan GUO
    Yuzhou XU
    Weixia CHEN
    Haiying ZHOU
    Mingshan YOU
    Baoyun LI
    Frontiers of Agricultural Science and Engineering, 2014, 1 (03) : 214 - 222
  • [33] Transcriptome analysis of wheat grain using RNA-Seq
    Wei, Liu
    Wu, Zhihui
    Zhang, Yufeng
    Guo, Dandan
    Xu, Yuzhou
    Chen, Weixia
    Zhou, Haiying
    You, Mingshan
    Li, Baoyun
    FRONTIERS OF AGRICULTURAL SCIENCE AND ENGINEERING, 2014, 1 (03) : 214 - 222
  • [34] Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome
    Chaudhuri, Roy R.
    Yu, Lu
    Kanji, Alpa
    Perkins, Timothy T.
    Gardner, Paul P.
    Choudhary, Jyoti
    Maskell, Duncan J.
    Grant, Andrew J.
    MICROBIOLOGY-SGM, 2011, 157 : 2922 - 2932
  • [35] TRANSCRIPTOME ANALYSIS OF SINGLE BOVINE EMBRYOS BY RNA-Seq
    Ross, P. J.
    Chitwood, J. L.
    REPRODUCTION FERTILITY AND DEVELOPMENT, 2012, 24 (01) : 182 - 182
  • [36] RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli
    Lee, Kyounghee
    Park, Ok-Sun
    Seo, Pil Joon
    MOLECULES AND CELLS, 2016, 39 (06) : 484 - 494
  • [37] Transcriptome analysis of rice root heterosis by RNA-Seq
    Zhai, Rongrong
    Feng, Yue
    Wang, Huimin
    Zhan, Xiaodeng
    Shen, Xihong
    Wu, Weiming
    Zhang, Yingxin
    Chen, Daibo
    Dai, Gaoxing
    Yang, Zhanlie
    Cao, Liyong
    Cheng, Shihua
    BMC GENOMICS, 2013, 14
  • [38] Transcriptome analysis of wheat grain using RNA-Seq
    Liu WEI
    Zhihui WU
    Yufeng ZHANG
    Dandan GUO
    Yuzhou XU
    Weixia CHEN
    Haiying ZHOU
    Mingshan YOU
    Baoyun LI
    Frontiers of Agricultural Science and Engineering, 2014, (03) : 214 - 222
  • [39] RNA-seq for detailed analysis of Mycobacterium avium transcriptome
    Ignatov, D.
    Malakho, S.
    Majorov, K.
    Skvortsov, T.
    Azhikina, T.
    FEBS JOURNAL, 2012, 279 : 509 - 510
  • [40] Transcriptome analysis of rice root heterosis by RNA-Seq
    Rongrong Zhai
    Yue Feng
    Huimin Wang
    Xiaodeng Zhan
    Xihong Shen
    Weiming Wu
    Yingxin Zhang
    Daibo Chen
    Gaoxing Dai
    Zhanlie Yang
    Liyong Cao
    Shihua Cheng
    BMC Genomics, 14