Theoretical study of helium insertion and diffusion in 3C-SiC

被引:29
|
作者
Van Ginhoven, RM
Chartier, A
Meis, C
Weber, WJ
Corrales, LR
机构
[1] CEA Saclay, DEN, DPC, SCP, F-91191 Gif Sur Yvette, France
[2] UEPEM, INSTN Saclay, F-91191 Gif Sur Yvette, France
[3] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
D O I
10.1016/j.jnucmat.2005.09.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Insertion and diffusion of helium in cubic silicon carbide have been investigated by means of density functional theory. The method was assessed by calculating relevant properties for the perfect crystal along with point defect formation energies. Results are consistent with available theoretical and experimental data. Helium insertion energies were calculated to be lower for divacancy and silicon vacancy defects compared to the other mono-vacancies and interstitial sites considered. Migration barriers for helium were determined by using the nudged elastic band method. Calculated activation energies for migration in and around vacancies (silicon vacancy, carbon vacancy or divacancy) range from 0.6 to 1.0 eV. Activation energy for interstitial migration is calculated to be 2.5 eV. Those values are discussed and related to recent experimental activation energies for migration that range from 1.1 [P. Jung, J. Nucl. Mater. 191-194 (1992) 377] to 3.2 eV [E. Oliviero, A. van Veen, A.V. Fedorov, M.F. Beaufort, J.F. Bardot, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 223; E. Oliviero, M. F. Beaufort, J.F. Bardot, A. van Veen, AN. Fedorov, J. Appl. Phys. 93 (2003) 23 1], depending on the SiC samples used and on helium implantation conditions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 59
页数:9
相关论文
共 50 条
  • [31] Gold films epitaxially grown by diffusion at the 3C-SiC/Si interface
    Komninou, Ph.
    Stoemenos, J.
    Nouet, G.
    Karakostas, Th.
    Journal of Crystal Growth, 1999, 203 (01): : 103 - 112
  • [32] Boron diffusion in nanocrystalline 3C-SiC (vol 104, 213108, 2014)
    Schnabel, Manuel
    Weiss, Charlotte
    Canino, Mariaconcetta
    Rachow, Thomas
    Loeper, Philipp
    Summonte, Caterina
    Mirabella, Salvo
    Janz, Stefan
    Wilshaw, Peter R.
    APPLIED PHYSICS LETTERS, 2014, 104 (24)
  • [33] Waveguides and modulators in 3C-SiC
    Kewell, A
    Vonsovici, A
    Reed, GT
    Evans, AGR
    SILICON-BASED AND HYBRID OPTOELECTRONICS III, 2001, 4293 : 54 - 62
  • [34] Diffusion of hydrogen isotopes in 3C-SiC in HTR-PM: A first-principles study
    Wang, Wenyi
    Li, Chuan
    Shang, Shun-Li
    Cao, Jianzhu
    Liu, Zi-Kui
    Wang, Yi
    Fang, Chao
    PROGRESS IN NUCLEAR ENERGY, 2020, 119
  • [35] PSEUDOPOTENTIAL CALCULATIONS ON 3C-SIC
    AOURAG, H
    DJELOULI, B
    HAZZAB, A
    KHELIFA, B
    MATERIALS CHEMISTRY AND PHYSICS, 1994, 39 (01) : 34 - 39
  • [36] ZnO growth on 3C-SiC
    Minegishi, Tsutomu
    Narita, Yuzuru
    Tokairin, Shizuka
    Fujimoto, Gakuyo
    Suzuki, Hideyuki
    Vashaei, Zahra
    Sumitani, Kazushi
    Sakata, Osami
    Cho, Meongwhan
    Yao, Takafumi
    Suemitsu, Maki
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 49 (03) : 903 - 907
  • [37] Substitutional Ge in 3C-SiC
    Guedj, C
    Kolodzey, J
    APPLIED PHYSICS LETTERS, 1999, 74 (05) : 691 - 693
  • [38] Thermodynamic properties of 3C-SiC
    Thakore, B. Y.
    Khambholja, S. G.
    Vahora, A. Y.
    Bhatt, N. K.
    Jani, A. R.
    CHINESE PHYSICS B, 2013, 22 (10)
  • [39] EXPERIMENTAL 3C-SIC MOSFET
    KONDO, Y
    TAKAHASHI, T
    ISHII, K
    HAYASHI, Y
    SAKUMA, E
    MISAWA, S
    DAIMON, H
    YAMANAKA, M
    YOSHIDA, S
    IEEE ELECTRON DEVICE LETTERS, 1986, 7 (07) : 404 - 406
  • [40] Diamond as substrate for 3C-SiC growth: A TEM study
    Lloret, F. (fernando.lloret@uca.es), 1600, Wiley-VCH Verlag (211):