Poly(ethylene oxide)/Poly(vinylidene fluoride)/Li6.4La3Zr1.4ATa0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries

被引:46
|
作者
Bai, Changjiang [1 ]
Wu, Zhenguo [1 ]
Xiang, Wei [2 ]
Wang, Gongke [3 ]
Liu, Yuxia [4 ]
Zhong, Yanjun [1 ]
Chen, Butian [5 ]
Liu, Rundie [1 ]
He, Fengrong [5 ]
Guo, Xiaodong [1 ]
机构
[1] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Peoples R China
[2] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[3] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
[4] Qufu Normal Univ, Key Lab Life Organ Anal, Key Lab Pharmaceut Intermediates & Anal Nat Med, Sch Chem & Chem Engn, Qufu 273165, Shandong, Peoples R China
[5] Ruyuan Hec Technol Corp, Postdoctoral Mobile Res Ctr, Ruyuan 512000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite electrolyte; Polyethylene oxide; Ionic conductivity; Interfacial impedance; Stable layer; Solid lithium metal battery; NI-RICH CATHODE; HIGH IONIC-CONDUCTIVITY; POLYMER ELECTROLYTE; HIGH-VOLTAGE; STABILITY; MEMBRANE; GRADIENT; SURFACE;
D O I
10.1016/j.jpowsour.2020.228461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-ceramic composite electrolyte is an effective solution for developing high-performance and flexible all-solid-state lithium metal battery. However, the key bottleneck of composite electrolyte including low ionic conductivity and high interfacial impedance have impeded their industrialization in solid electrolyte lithium batteries. Here we present a polymer-ceramic hybrid electrolyte (polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)/Li(6.4)La(3)Zr(1.4)ATa(0.6)O(12) (LLZTO)) is designed and modified by trace amount of liquid electrolyte. The addition of PVDF can not only reduce the crystallinity of PEO polymer, but also intensify the affinity between liquid electrolyte and the composite electrolyte. Furthermore, the interfacial modification can synchronously achieve the intimate connection, low interfacial impedance between the electrodes and solid electrolytes by forming the viscoelastic and stable layer. Due to the artful design, the solid-state battery deliver excellent performance. The Li symmetric cells show excellent interface stability without short circuits for 1000h. The assembled LiFePO4/Li cells exhibit a discharge capacity of 160.1 mA h g(-1) after 200 cycles at 0.4C and 143.3 mA h g(-1) at 5C. The composite solid electrolyte provides an effective and feasible methods to solve the interfacial issues and develop high performance solid lithium metal batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Anti-corrosion lithium anode interface by Li6.4La3Zr1.4Ta0.6O12 modified buffer layer for stable cycling of room-temperature solid-state lithium metal batteries
    Yang, Da
    Liu, Yaning
    Yang, Tianqi
    Fang, Ruyi
    Xiao, Zhen
    Zhang, Wenkui
    He, Xinping
    Gan, Yongping
    Zhang, Jun
    Xia, Xinhui
    Huang, Hui
    Xia, Yang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 689
  • [22] Dual-Coordination-Induced Poly(vinylidene fluoride)/Li6.4Ga0.2La3Zr2O12/Succinonitrile Composite Solid Electrolytes Toward Enhanced Rate Performance in All-Solid-State Lithium Batteries
    Cao, Shiyu
    Chen, Fei
    Shen, Qiang
    Zhang, Lianmeng
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (31) : 37422 - 37432
  • [23] Lithium Expulsion from the Solid-State Electrolyte Li6.4La3Zr1.4Ta0.6O12 by Controlled Electron Injection in a SEM
    Xie, Xiaowei
    Xing, Juanjuan
    Hu, Dongli
    Gu, Hui
    Chen, Cheng
    Guo, Xiangxin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) : 5978 - 5983
  • [24] Synergistically enhancing interface stability with soft gel and garnet-type Li6.4La3Zr1.4Ta0.6O12 bi-functional composite electrolyte of lithium metal batteries
    Wang, Qiujun
    Wang, Yaqing
    Bai, Nana
    Zhu, Weiqi
    Zhang, Di
    Li, Zhaojin
    Sun, Huilan
    Sun, Qujiang
    Wang, Bo
    Fan, Li-Zhen
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (12) : 2428 - 2438
  • [25] The construction of quasi-solid state electrolyte with introduction of Li6.4La3Zr1.4Ta0.6O12 to suppress lithium polysulfides? shuttle effect in Li-S batteries
    Pang, Ying
    Liu, Ziqin
    Shang, Chaoqun
    MATERIALS LETTERS, 2023, 336
  • [26] In Situ Synthesis of a Li6.4La3Zr1.4Ta0.6O12/Poly(vinylene carbonate) Hybrid Solid-State Electrolyte with Enhanced Ionic Conductivity and Stability
    Huang, Xingyu
    Wu, Jinfeng
    Wang, Xuewei
    Tian, Yue
    Zhang, Fei
    Yang, Menghua
    Xu, Binbin
    Wu, Bin
    Liu, Xiaoyan
    Li, Hexing
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 9368 - 9375
  • [27] Cold Sintering of Li6.4La3Zr1.4Ta0.6O12/PEO Composite Solid Electrolytes
    He, Binlang
    Kang, Shenglin
    Zhao, Xuetong
    Zhang, Jiexin
    Wang, Xilin
    Yang, Yang
    Yang, Lijun
    Liao, Ruijin
    MOLECULES, 2022, 27 (19):
  • [28] Poly(ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly(ethylene glycol) dimethyl ether
    Cha, Ji Hye
    Didwal, Pravin N.
    Kim, Ju Min
    Chang, Duck Rye
    Park, Chan-Jin
    JOURNAL OF MEMBRANE SCIENCE, 2020, 595
  • [29] Polyether sulfone and Li6.4La3Zr1.4Ta0.6O12 based polymer-in-ceramic electrolyte with enhanced conductivity at low temperature for solid state lithium batteries
    Sun, Jiawen
    Tian, Meng
    Dong, Hongchun
    Lu, Zhengyi
    Peng, Lin
    Rong, Yi
    Yang, Ruizhi
    Shu, Jie
    Jin, Chao
    APPLIED MATERIALS TODAY, 2022, 27
  • [30] Enhanced Performance of Li6.4La3Zr1.4Ta0.6O12 Solid Electrolyte by the Regulation of Grain and Grain Boundary Phases
    Huang, Zeya
    Chen, Linhui
    Huang, Bing
    Xu, Biyi
    Shao, Gang
    Wang, Hailong
    Li, Yutao
    Wang, Chang-An
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) : 56118 - 56125