Motility and chemotaxis in alkaliphilic Bacillus species

被引:26
|
作者
Fujinami, Shun [1 ,4 ]
Terahara, Naoya [1 ,2 ]
Krulwich, Terry Ann [1 ,3 ]
Ito, Masahiro [1 ,2 ]
机构
[1] Toyo Univ, Grad Sch Life Sci, Gunma 3740193, Japan
[2] Toyo Univ, Bionano Elect Res Ctr, Saitama 3508585, Japan
[3] Mt Sinai Sch Med, Dept Pharmacol & Syst Therapeut, New York, NY 10029 USA
[4] Natl Inst Technol & Evaluat, NITE Bioresource Informat Ctr, Dept Biotechnol, Shibuya Ku, Tokyo 1510066, Japan
关键词
alkaliphile; Bacillus; chemotaxis; flagella; motility; MotPS; NaChBac; Na+ cycle; sodium-dependent; voltage-gated Na+ channel; DRIVEN FLAGELLAR MOTORS; NA+ CHANNEL NAVBP; ESCHERICHIA-COLI; ALKALOPHILIC BACILLUS; SALMONELLA-TYPHIMURIUM; CATABOLITE REPRESSION; PROTONMOTIVE FORCE; ALKALINE PROTEASE; CRYSTAL-STRUCTURE; PSEUDOFIRMUS OF4;
D O I
10.2217/FMB.09.76
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Alkaliphilic Bacillus species grow at pH values up to approximately 11. Motile alkaliphilic Bacillus use electrochemical gradients of Na+ (sodium-motive force) to power ion-coupled, flagella-mediated motility as opposed to the electrochemical gradients of H+ (proton-motive force) used by most neutralophilic bacteria. Membrane-embedded stators of bacterial flagella contain ion channels through which either H+ or Na+ flow to energize flagellar rotation. Stators of the major H-coupled type, MotAB, are distinguishable from Na+-coupled stators, PomAB of marine bacteria and MotPS of alkaliphilic Bacillus. Dual ion-coupling capacity is found in neutralophilic Bacillus strains with both MotAB and MotPS. There is also a MotAB variant that uses both coupling ions, switching as a function of pH. Chemotaxis of alkaliphilic Bacillus depends upon flagellar motility but also requires a distinct voltage-gated NaChBac-type channel. The two alkaliphile Na+ channels provide new vistas on the diverse adaptations of sensory responses in bacteria.
引用
收藏
页码:1137 / 1149
页数:13
相关论文
共 50 条
  • [31] MOTILITY AND CHEMOTAXIS OF AN AQUATIC SPIROCHETE
    GREENBERG, EP
    JOURNAL OF CHEMICAL ECOLOGY, 1990, 16 (01) : 114 - 114
  • [32] Motility and Chemotaxis in Campylobacter and Helicobacter
    Lertsethtakarn, Paphavee
    Ottemann, Karen M.
    Hendrixson, David R.
    ANNUAL REVIEW OF MICROBIOLOGY, VOL 65, 2011, 65 : 389 - 410
  • [33] INTRODUCTION TO BACTERIAL MOTILITY AND CHEMOTAXIS
    MANSON, MD
    JOURNAL OF CHEMICAL ECOLOGY, 1990, 16 (01) : 107 - 113
  • [34] CONTROL OF BACTERIAL MOTILITY IN CHEMOTAXIS
    HOBSON, AC
    BLACK, RA
    ADLER, J
    SYMPOSIA OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY, 1982, (35) : 105 - 121
  • [35] Motility and chemotaxis in Serpulina hyodysenteriae
    Kennedy, MJ
    Yancey, RJ
    VETERINARY MICROBIOLOGY, 1996, 49 (1-2) : 21 - 30
  • [36] Nonconventional cation-coupled flagellar motors derived from the alkaliphilic Bacillus and Paenibacillus species
    Ito, Masahiro
    Takahashi, Yuka
    EXTREMOPHILES, 2017, 21 (01) : 3 - 14
  • [37] Nonconventional cation-coupled flagellar motors derived from the alkaliphilic Bacillus and Paenibacillus species
    Masahiro Ito
    Yuka Takahashi
    Extremophiles, 2017, 21 : 3 - 14
  • [38] The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli
    Burkart, M
    Toguchi, A
    Harshey, RM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (05) : 2568 - 2573
  • [39] The Unique Paradigm of Spirochete Motility and Chemotaxis
    Charon, Nyles W.
    Cockburn, Andrew
    Li, Chunhao
    Liu, Jun
    Miller, Kelly A.
    Miller, Michael R.
    Motaleb, Md A.
    Wolgemuth, Charles W.
    ANNUAL REVIEW OF MICROBIOLOGY, VOL 66, 2012, 66 : 349 - 370
  • [40] The Rho GTPases in macrophage motility and chemotaxis
    Jones, GE
    Allen, WE
    Ridley, AJ
    CELL ADHESION AND COMMUNICATION, 1998, 6 (2-3) : 237 - 245