Chinese chunking with tri-training learning

被引:0
|
作者
Chen, Wenliang [1 ,2 ]
Zhang, Yujie [1 ]
Isahara, Hitoshi [1 ]
机构
[1] Natl Inst Informat & Commun Technol, Computat Linguist Grp, 3-5 Hikari Dai, Seika, Kyoto 6190289, Japan
[2] Northeastern Univ, Nat Lang Proc Lab, Shenyang 110004, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a practical tri-training method for Chinese chunking using a small amount of labeled training data and a much larger pool of unlabeled data. We propose a novel selection method for tri-training learning in which newly labeled sentences are selected by comparing the agreements of three classifiers. In detail, in each iteration, a new sample is selected for a classifier if the other two classifiers agree on the labels while itself disagrees. We compare the proposed tri-training learning approach with co-training learning approach on Upenn Chinese Treebank V4.0(CTB4). The experimental results show that the proposed approach can improve the performance significantly.
引用
收藏
页码:466 / +
页数:2
相关论文
共 50 条
  • [41] Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification
    Tang, Xiao-Liang
    Han, Min
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 23 (03) : 345 - 372
  • [42] 基于密度峰值聚类的Tri-training算法
    罗宇航
    吴润秀
    崔志华
    张翼英
    何业慎
    赵嘉
    [J]. 系统仿真学报, 2024, 36 (05) : 1189 - 1198
  • [43] 基于Tri-Training半监督分类算法的研究
    张雁
    吕丹桔
    吴保国
    [J]. 计算机技术与发展, 2013, 23 (07) : 77 - 79
  • [44] Mixup Asymmetric Tri-Training for Heartbeat Classification under Domain Shift
    Li, Jiawei
    Wang, Guijin
    Chen, Ming
    Ding, Zijian
    Yang, Huazhong
    [J]. IEEE Signal Processing Letters, 2021, 28 : 718 - 722
  • [45] 基于Tri-training的多特征融合图像检索
    陈秀新
    郑雅
    于重重
    贾克斌
    [J]. 计算机应用研究, 2014, 31 (11) : 3506 - 3509
  • [46] Offline data-driven evolutionary optimization based on tri-training
    Huang, Pengfei
    Wang, Handing
    Jin, Yaochu
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2021, 60
  • [47] Mixup Asymmetric Tri-Training for Heartbeat Classification Under Domain Shift
    Li, Jiawei
    Wang, Guijin
    Chen, Ming
    Ding, Zijian
    Yang, Huazhong
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 718 - 722
  • [48] Semi-Supervised Tri-Training for Explicit Discourse Argument Expansion
    Knaebel, Rene
    Stede, Manfred
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 1103 - 1109
  • [49] Semi-supervised PolSAR Classification Based on Improved Tri-training
    Hua, Wenqiang
    Wang, Shuang
    Zhao, Yang
    Yue, Bo
    Guo, Yanhe
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3937 - 3940
  • [50] Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback
    Saito, Yuta
    [J]. PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 309 - 318