Significance of interfacial interaction and agglomerates on electrical properties of polymer-carbon nanotube nanocomposites

被引:82
|
作者
Hoseini, Amir Hosein Ahmadian [1 ]
Arjmand, Mohammad [1 ]
Sundararaj, Uttandaraman [1 ]
Trifkovic, Milana [1 ]
机构
[1] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Polymer nanocomposite; Carbon nanotube; Interfacial interaction; Agglomerate; Electrical conductivity; Electromagnetic interference shielding; MOLECULAR-DYNAMICS SIMULATIONS; SIMPLE SHEAR FLOWS; SHIELDING EFFECTIVENESS; PERCOLATION-THRESHOLD; TRANSPORT-PROPERTIES; CONDUCTING POLYMERS; COMPOSITES; DISPERSION; BLACK; BLENDS;
D O I
10.1016/j.matdes.2017.04.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ability to control the dispersion state of carbon nanotubes (CNTs) in polymer matrices is closely related to the electrical tunability of polymer-CNT nanocomposites. In this study, the effect of polymer-CNT interactions at the molecular level on the extent of CNT dispersion and consequent electrical properties of the developed nanocomposites are investigated. Two polymer models with dissimilar affinities towards CNTs are studied: polyamide-6 (PA6) having high, and polystyrene (PS) having low affinity towards CNTs. Experiments demonstrate that enhanced polymer-filler interactions in PA6-CNT system lead to improved CNT dispersion at the nanoscopic level. However, PS-CNT system, having higher number density of micro-agglomerates, has approximately ten times lower percolation threshold (0.3 wt% versus 2.9wt%) and significantly enhanced electrical properties. High affinity of PA6 towards CNTs is proposed to adversely influence electrical properties via encapsulation of CNTs by PA6 through possible wrapping and interfacial crystallization of polymer chains. On the other hand, enhanced electrical properties in PS-CNT nanocomposites are attributed to higher number density of micro-agglomerates, contributing to secondary internal electric field.
引用
收藏
页码:126 / 134
页数:9
相关论文
共 50 条
  • [31] Stratified rod network model of electrical conductance in ultrathin polymer-carbon nanotube multilayers
    Zurita-Gotor, Mauricio
    Gittleson, Forrest S.
    Taylor, Andre D.
    Blawzdziewicz, Jerzy
    [J]. PHYSICAL REVIEW B, 2013, 87 (19):
  • [32] Rheological and electrical percolation thresholds of carbon nanotube/polymer nanocomposites
    Penu, Christian
    Hu, Guo-Hua
    Fernandez, Amaia
    Marchal, Philippe
    Choplin, Lionel
    [J]. POLYMER ENGINEERING AND SCIENCE, 2012, 52 (10): : 2173 - 2181
  • [33] Modeling of the Interfacial Stress Transfer Parameter for Polymer/Carbon Nanotube Nanocomposites
    Y. Zare
    K.-Y. Rhee
    [J]. Physical Mesomechanics, 2020, 23 : 616 - 620
  • [34] Modeling of the Interfacial Stress Transfer Parameter for Polymer/Carbon Nanotube Nanocomposites
    Zare, Y.
    Rhee, K. -Y.
    [J]. PHYSICAL MESOMECHANICS, 2020, 23 (06) : 616 - 620
  • [35] Interfacial load transfer mechanisms in carbon nanotube-polymer nanocomposites
    Bagchi, Soumendu
    Harpale, Abhilash
    Chew, Huck Beng
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2216):
  • [36] Electrical Properties of Polymer/Carbon Nanotube Blends
    R. Salgado-Delgado
    A. Olarte-Paredes
    Z. Vargas-Galarza
    E. García-Hernández
    A. M. Salgado-Delgado
    E. Rubio-Rosas
    J. Campos-Álvarez
    V. M. Castaño
    [J]. Journal of Electronic Materials, 2016, 45 : 5341 - 5346
  • [37] Electrical Properties of Polymer/Carbon Nanotube Blends
    Salgado-Delgado, R.
    Olarte-Paredes, A.
    Vargas-Galarza, Z.
    Garcia-Hernandez, E.
    Salgado-Delgado, A. M.
    Rubio-Rosas, E.
    Campos-Alvarez, J.
    Castano, V. M.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (10) : 5341 - 5346
  • [38] Polymer-carbon nanotube composites: electrospinning, alignment and interactions
    Winter, A. Douglas
    Larios, Eduardo
    Alamgir, Faisal M.
    Jaye, Chem
    Fischer, Daniel A.
    Campo, Eva M.
    [J]. NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES XI, 2014, 9170
  • [39] Self-Healing and Electrical Properties of Viscoelastic Polymer-Carbon Blends
    Milkin, Pavel
    Danzer, Michael
    Ionov, Leonid
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (19)
  • [40] Multiwalled carbon nanotube/polymer nanocomposites:: Processing and properties
    Dalmas, F
    Chazeau, L
    Gauthier, C
    Masenelli-Varlot, K
    Dendievel, R
    Cavaillé, JY
    Forró, L
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2005, 43 (10) : 1186 - 1197