Numerical investigations of foam-like materials by nested high-order finite element methods

被引:19
|
作者
Sehlhorst, H. -G. [1 ]
Jaenicke, R. [2 ]
Duester, A. [1 ]
Rank, E. [3 ]
Steeb, H. [4 ,5 ]
Diebels, S. [2 ]
机构
[1] Tech Univ Hamburg, D-21073 Hamburg, Germany
[2] Univ Saarland, Lehrstuhl Tech Mech, D-66123 Saarbrucken, Germany
[3] Tech Univ Munich, Lehrstuhl Computat Engn, D-80290 Munich, Germany
[4] Ruhr Univ Bochum, Lehrstuhl Kontinuumsmech, D-44780 Bochum, Germany
[5] Univ Twente, CTW, TS, NL-7500 AE Enschede, Netherlands
关键词
Cellular foams; Homogenization; Large deformations; P-VERSION; DEFORMATION-THEORY; BEHAVIOR; HONEYCOMBS; SOLIDS; FE2;
D O I
10.1007/s00466-009-0414-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a multiscale framework suited for geometrically nonlinear computations of foam-like materials applying high-order finite elements (p-FEM). This framework is based on a nested finite element analysis (FEA) on two scales, one nonlinear boundary value problem on the macroscale and k independent nonlinear boundary value problems on the microscale allowing for distributed computing. The two scales are coupled by a numerical projection and homogenization procedure. On the microscale the foam-like structures are discretized by high-order continuum-based finite elements, which are known to be very efficient and robust with respect to locking effects. In our numerical examples we will discuss in detail three characteristic test cases (simple shear, tension and bending). Special emphasis is placed on the material's deformation-induced anisotropy and the macroscopic load-displacement behavior.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 50 条
  • [1] Numerical investigations of foam-like materials by nested high-order finite element methods
    H. -G. Sehlhorst
    R. Jänicke
    A. Düster
    E. Rank
    H. Steeb
    S. Diebels
    Computational Mechanics, 2009, 45 : 45 - 59
  • [2] On high-order conservative finite element methods
    Abreu, Eduardo
    Diaz, Ciro
    Galvis, Juan
    Sarkis, Marcus
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1852 - 1867
  • [3] High-order finite element methods for acoustic problems
    Harari, I
    Avraham, D
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 1997, 5 (01) : 33 - 51
  • [4] Superconvergence in high-order Galerkin finite element methods
    Qun, Lin
    Junming, Zhou
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) : 3779 - 3784
  • [5] Implementing and using high-order finite element methods
    Bagheri, Babak
    Ridgway Scott, L.
    Zhang, Shangyou
    Finite elements in analysis and design, 1994, 16 (3-4) : 175 - 189
  • [6] Numerical behavior of high-order finite difference methods
    Olsson, Pelle
    Journal of Scientific Computing, 1994, 9 (04) : 445 - 466
  • [7] Deep ReLU networks and high-order finite element methods
    Opschoor, Joost A. A.
    Petersen, Philipp C.
    Schwab, Christoph
    ANALYSIS AND APPLICATIONS, 2020, 18 (05) : 715 - 770
  • [8] High-order finite element methods for parallel atmospheric modeling
    St Cyr, A
    Thomas, SJ
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 1, PROCEEDINGS, 2005, 3514 : 256 - 262
  • [9] HIGH-ORDER CURVILINEAR FINITE ELEMENT METHODS FOR LAGRANGIAN HYDRODYNAMICS
    Dobrev, Veselin A.
    Kolev, Tzanio V.
    Rieben, Robert N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : B606 - B641
  • [10] Use of discontinuity factors in high-order finite element methods
    Vidal-Ferrandiz, A.
    Gonzalez-Pintor, S.
    Ginestar, D.
    Verdu, G.
    Asadzadeh, M.
    Demaziere, C.
    ANNALS OF NUCLEAR ENERGY, 2016, 87 : 728 - 738