The earth's gravity field recovery using the third invariant of the gravity gradient tensor from GOCE

被引:3
|
作者
Cai, Lin [1 ,2 ]
Wan, Xiaoyun [3 ]
Hsu, Houtse [4 ]
Ran, Jiangjun [5 ]
Meng, Xiangchao [6 ]
Luo, Zhicai [1 ,2 ]
Zhou, Zebing [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, MOE Key Lab Fundamental Phys Quant Measurement, Hubei Key Lab Gravitat & Quantum Phys, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Geophys, Wuhan 430074, Peoples R China
[3] China Univ Geosci Beijing, Sch Land Sci & Technol, Beijing 100083, Peoples R China
[4] Chinese Acad Sci, Inst Geodesy & Geophys IGG, Wuhan 430077, Peoples R China
[5] Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
[6] China Earthquake Adm, First Crust Deformat Monitoring & Applicat Ctr, Tianjin 300180, Peoples R China
基金
中国博士后科学基金;
关键词
D O I
10.1038/s41598-021-81840-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Due to the independence of the gradiometer instrument's orientation in space, the second invariant I2 of gravity gradients in combination with individual gravity gradients are demonstrated to be valid for gravity field determination. In this contribution, we develop a novel gravity field model named I3GG, which is built mainly based on three novel elements: (1) proposing to utilize the third invariant I3 of the gravity field and steady-state ocean circulation explorer (GOCE) gravity gradient tensor, instead of using the I2, similar to the previous studies; (2) applying an alternative two-dimensional fast fourier transform (2D FFT) method; (3) showing the advantages of I3 over I2 in the effect of measurement noise from the theoretical and practical computations. For the purpose of implementing the linearization of the third invariant, this study employs the theory of boundary value problems with sphere approximation at an accuracy level of O(J22</mml:msubsup>.Tij). In order to efficiently solve the boundary value problems, we proposed an alternative method of 2D FFT, which uses the coherent sampling theory to obtain the relationship between the 2D FFT and the third invariant measurements and uses the pseudo-inverse via QR factorization to transform the 2D Fourier coefficients to spherical harmonic ones. Based on the GOCE gravity gradient data of the nominal mission phase, a novel global gravity field model (I3GG) is derived up to maximum degree/order 240, corresponding to a spatial resolution of 83 km at the equator. Moreover, in order to investigate the differences of gravity field determination between I3 with <mml:msub>I2, we applied the same processing strategy on the second invariant measurements of the GOCE mission and we obtained another gravity field model (I2GG) with a maximum degree of 220, which is 20 degrees lower than that of I3GG. The root-mean-square (RMS) values of geoid differences indicates that the effects of measurement noise of I3GG is about 20% lower than that on I2GG when compared to the gravity field model EGM2008 (Earth Gravitational Model 2008) or EIGEN-5C (EIGEN: European Improved Gravity model of the Earth by New techniques). Then the accuracy of I3GG is evaluated independently by comparison the RMS differences between Global Navigation Satellite System (GNSS)/leveling data and the model-derived geoid heights. Meanwhile, the re-calibrated GOCE data released in 2018 is also dealt with and the corresponding result also shows the similar characteristics.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] An Improved Model of the Earth’s Static Gravity Field Solely Derived from Reprocessed GOCE Data
    Jan Martin Brockmann
    Till Schubert
    Wolf-Dieter Schuh
    [J]. Surveys in Geophysics, 2021, 42 : 277 - 316
  • [42] Evaluation of the third- and fourth-generation GOCE Earth gravity field models with Australian terrestrial gravity data in spherical harmonics
    Rexer, Moritz
    Hirt, Christian
    Pail, Roland
    Claessens, Sten
    [J]. JOURNAL OF GEODESY, 2014, 88 (04) : 319 - 333
  • [43] Evaluation of the third- and fourth-generation GOCE Earth gravity field models with Australian terrestrial gravity data in spherical harmonics
    Moritz Rexer
    Christian Hirt
    Roland Pail
    Sten Claessens
    [J]. Journal of Geodesy, 2014, 88 : 319 - 333
  • [44] Gravity gradient distribution in mainland China from GOCE satellite gravity gradiometry data
    Xu Haijun
    Zhang Yongzhi
    Duan Hurong
    [J]. GEODESY AND GEODYNAMICS, 2015, 6 (01) : 41 - 45
  • [45] Combined modeling of the Earth's gravity field from GRACE and GOCE satellite observations: a numerical study
    Ditmar, P.
    Liu, X.
    Klees, R.
    Tenzer, R.
    Moore, P.
    [J]. DYNAMIC PLANET: MONITORING AND UNDERSTANDING A DYNAMIC PLANET WITH GEODETIC AND OCEANOGRAPHIC TOOLS, 2007, 130 : 403 - +
  • [46] An Improved Model of the Earth's Static Gravity Field Solely Derived from Reprocessed GOCE Data
    Brockmann, Jan Martin
    Schubert, Till
    Schuh, Wolf-Dieter
    [J]. SURVEYS IN GEOPHYSICS, 2021, 42 (02) : 277 - 316
  • [47] Gravity field model calculated by using the GOCE data
    Su Yong
    Fan Dong-Ming
    You Wei
    [J]. ACTA PHYSICA SINICA, 2014, 63 (09)
  • [48] Estimation of the Earth's tensor of inertia from recent global gravity field solutions
    Marchenko, AN
    Schwintzer, P
    [J]. JOURNAL OF GEODESY, 2003, 76 (9-10) : 495 - 509
  • [49] Estimation of the Earth's tensor of inertia from recent global gravity field solutions
    A. N. Marchenko
    P. Schwintzer
    [J]. Journal of Geodesy, 2003, 76 : 495 - 509
  • [50] The impact analysis of corrections to GOCE satellite gravity gradient observations by accounting for temporal gravity field variations
    Chen J.
    Zhang X.
    Shen Y.
    Chen Q.
    Li W.
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (03): : 324 - 332