Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys

被引:14
|
作者
Liu, Naijia [1 ]
Ma, Tianxing [2 ]
Liao, Chaoqun [3 ,4 ]
Liu, Guannan [1 ]
Mota, Rodrigo Miguel Ojeda [1 ]
Liu, Jingbei [1 ]
Sohn, Sungwoo [1 ]
Kube, Sebastian [1 ]
Zhao, Shaofan [3 ]
Singer, Jonathan P. [2 ]
Schroers, Jan [1 ]
机构
[1] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA
[2] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA
[3] Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[4] Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41598-021-83384-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al-Ni-Ge system where we identified Al51Ge35Ni14 as the best glass forming composition with a critical cooling rate of 10(4) K/s.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A new approach for determining the critical cooling rates of nucleation in glass-forming liquids
    Liu, Shujiang (lsj-24@163.com), 1600, Blackwell Publishing Inc., Postfach 10 11 61, 69451 Weinheim, Boschstrabe 12, 69469 Weinheim, Deutschland, 69469, Germany (100):
  • [42] Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing (vol 7, 7155, 2017)
    Bordeenithikasem, Punnathat
    Liu, Jingbei
    Kube, Sebastian A.
    Li, Yanglin
    Ma, Tianxing
    Scanley, B. Ellen
    Broadbridge, Christine C.
    Vlassak, Joost J.
    Singer, Jonathan P.
    Schroers, Jan
    SCIENTIFIC REPORTS, 2018, 8
  • [43] Solute-Vacancy Bond Energy in Some Diluted Aluminum-Base Alloys.
    Regidor, J.J.
    Sanchez, A.
    Revista de Metalurgia (Madrid), 1976, 12 (01): : 3 - 10
  • [44] Critical cooling rates for glass formation in Zr-Al-Cu-Ni alloys
    Hng, HH
    Li, Y
    Ng, SC
    Ong, CK
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1996, 208 (1-2) : 127 - 138
  • [45] Metastability and properties of metallic bulk glass forming alloys
    Fecht, HJ
    STRUCTURE AND DYNAMICS OF GLASSES AND GLASS FORMERS, 1997, 455 : 307 - 318
  • [46] Critical feature space for predicting the glass forming ability of metallic alloys revealed by machine learning
    Deng, Binghui
    Zhang, Yali
    CHEMICAL PHYSICS, 2020, 538
  • [47] Solute redistribution during steady state directional solidification of a ternary aluminum-base alloys
    Chen, M
    Kattamis, TZ
    Brody, HD
    LIGHT METALS 1996, 1996, : 921 - 927
  • [48] Existence of multiple critical cooling rates which generate different types of monolithic metallic glass
    Schawe, Juergen E. K.
    Loeffler, Joerg F.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [49] Existence of multiple critical cooling rates which generate different types of monolithic metallic glass
    Jürgen E. K. Schawe
    Jörg F. Löffler
    Nature Communications, 10
  • [50] Ductile dendritic phase reinforced Ti-base bulk metallic glass-forming alloys
    He, G
    Eckert, J
    Löser, W
    Schultz, L
    SUPERCOOLED LIQUIDS, GLASS TRANSITION AND BULK METALLIC GLASSES, 2003, 754 : 327 - 332