Minimax fractional programming under nonsmooth generalized (F, ρ, θ)-d-univexity

被引:4
|
作者
Zheng, X. J. [1 ]
Cheng, L.
机构
[1] Zhejiang Normal Univ, Sch Math Phys & Informat Engn, Jinhua Zhejiang 321004, Peoples R China
[2] Jinhua Coll Profess & Technol, Normal Sch, Jinhua Zhejiang 321017, Peoples R China
关键词
minimax fractional problem; duality; sufficient optimality conditions; generalized convex functions;
D O I
10.1016/j.jmaa.2006.05.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with a nondifferentiable minimax fractional problem with inequality constraints. We introduce a new class of generalized convex function, that is, nonsmooth generalized (F, rho, theta)-d-univex function. In the framework of the new concept, we derive Kuhn-Tucker type sufficient optimality conditions and establish weak, strong and converse duality theorems for the problem and its three different types of dual problems. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:676 / 689
页数:14
相关论文
共 50 条
  • [1] Nondifferentiable multiobjective programming under generalized d-univexity
    Mishra, SK
    Wang, SY
    Lai, KK
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 160 (01) : 218 - 226
  • [2] Nondifferentiable minimax fractional programming under generalized univexity
    Mishra, SK
    Wang, SY
    Lai, KK
    Shi, JM
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (02) : 379 - 395
  • [3] OPTIMALITY CONDITIONS AND DUALITY FOR MINIMAX FRACTIONAL PROGRAMMING INVOLVING NONSMOOTH GENERALIZED UNIVEXITY
    Long, Xian-Jun
    Quan, Jing
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2011, 1 (03): : 361 - 370
  • [4] Generalized α-univexity and duality for nondifferentiable minimax fractional programming
    Mishra, S. K.
    Pant, R. P.
    Rautela, J. S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 144 - 158
  • [5] Second Order (F,α,ρ,d,p)-Univexity and Duality for Minimax Fractional Programming
    Haijun WANG
    Caozong CHENG
    Xiaodong FAN
    [J]. Journal of Mathematical Research with Applications, 2013, (02) : 164 - 174
  • [6] Second Order (F,α,ρ,d,p)-Univexity and Duality for Minimax Fractional Programming
    Haijun WANG
    Caozong CHENG
    Xiaodong FAN
    [J]. 数学研究及应用, 2013, 33 (02) : 164 - 174
  • [7] Non-differentiable minimax fractional programming with generalized α-univexity
    Jayswal, Anurag
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (01) : 121 - 135
  • [8] Second-order duality for a nondifferentiable minimax fractional programming under generalized α-univexity
    SK Gupta
    D Dangar
    Sumit Kumar
    [J]. Journal of Inequalities and Applications, 2012
  • [9] Second-order duality for a nondifferentiable minimax fractional programming under generalized α-univexity
    Gupta, S. K.
    Dangar, D.
    Kumar, Sumit
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [10] On nonsmooth multiobjective programming with generalized univexity
    Mishra, S. K.
    Giorgi, G.
    Lai, K. K.
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2007, 10 (05) : 681 - 695