Second Order (F,α,ρ,d,p)-Univexity and Duality for Minimax Fractional Programming

被引:0
|
作者
Haijun WANG [1 ,2 ]
Caozong CHENG [1 ]
Xiaodong FAN [1 ]
机构
[1] College of Applied Sciences,Beijing University of Technology
[2] Department of Mathematics,Taiyuan Normal University
基金
中国国家自然科学基金;
关键词
second order(F; α; ρ; d; p)-univexity; minimax fractional programming; second order duality; optimality conditions;
D O I
暂无
中图分类号
O221.2 [非线性规划];
学科分类号
070105 ; 1201 ;
摘要
In this paper,we introduce a class of generalized second order(F,α,ρ,d,p)-univex functions.Two types of second order dual models are considered for a minimax fractional programming problem and the duality results are established by using the assumptions on the functions involved.
引用
收藏
页码:164 / 174
页数:11
相关论文
共 50 条
  • [1] Second Order (F,α,ρ,d,p)-Univexity and Duality for Minimax Fractional Programming
    Haijun WANG
    Caozong CHENG
    Xiaodong FAN
    [J]. 数学研究及应用, 2013, 33 (02) - 174
  • [2] Second order α-univexity and duality for nondifferentiable minimax fractional programming
    Yang, Gang
    Zeng, Fu-qiu
    Hu, Qing-jie
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (07) : 1272 - 1279
  • [3] Second-order duality for a nondifferentiable minimax fractional programming under generalized α-univexity
    SK Gupta
    D Dangar
    Sumit Kumar
    [J]. Journal of Inequalities and Applications, 2012
  • [4] Second-order duality for a nondifferentiable minimax fractional programming under generalized α-univexity
    Gupta, S. K.
    Dangar, D.
    Kumar, Sumit
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [5] Second order duality in minmax fractional programming with generalized univexity
    Sharma, Sarita
    Gulati, T. R.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (01) : 161 - 169
  • [6] Second order duality in minmax fractional programming with generalized univexity
    Sarita Sharma
    T. R. Gulati
    [J]. Journal of Global Optimization, 2012, 52 : 161 - 169
  • [7] Generalized α-univexity and duality for nondifferentiable minimax fractional programming
    Mishra, S. K.
    Pant, R. P.
    Rautela, J. S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 144 - 158
  • [8] On second order duality for minimax fractional programming
    Hu, Qingjie
    Yang, Gang
    Jian, Jinbao
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) : 3509 - 3514
  • [9] Minimax fractional programming under nonsmooth generalized (F, ρ, θ)-d-univexity
    Zheng, X. J.
    Cheng, L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) : 676 - 689
  • [10] Second-Order Duality for Nondifferentiable Minimax Fractional Programming Involving (F, ρ)-Convexity
    Gupta, S. K.
    Dangar, Debasis
    [J]. INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTIST, IMECS 2012, VOL II, 2012, : 1501 - 1506