Ubiquinone is necessary for Caenorhabditis elegans development at mitochondrial and non-mitochondrial sites

被引:57
|
作者
Hihi, AK [1 ]
Gao, Y [1 ]
Hekimi, S [1 ]
机构
[1] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada
关键词
D O I
10.1074/jbc.M109034200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ubiquinone (UQ) is a lipid co-factor that is involved in numerous enzymatic processes and is present in most cellular membranes. In particular, UQ is a crucial electron carrier in the mitochondrial respiratory chain. Recently, it was shown that clk-1 mutants of the nematode worm Caenorhabditis elegans do not synthesize UQ(9) but instead accumulate demethoxyubiquinone (DMQ(9)), a biosynthetic precursor of UQ(9) (the subscript refers to the length of the isoprenoid side chain). DMQ(9) is capable of carrying out the function of UQ(9) in the respiratory chain, as demonstrated by the functional competence of mitochondria isolated from clk-1 mutants, and the ability of DMQ(9) to act as a co-factor for respiratory enzymes in vitro. However, despite the presence of functional mitochondria, clk-1 mutant worms fail to complete development when feeding on bacteria that do not produce UQ(8). Here we show that clk-1 mutants cannot grow on bacteria producing only DMQ(8) and that worm coq-3 mutants, which produce neither UQ(9) nor DMQ(9), arrest development even on bacteria producing UQ(8). These results indicate that UQ is required for nematode development at mitochondrial and non-mitochondrial sites and that DMQ cannot functionally replace UQ at those non-mitochondrial sites.
引用
收藏
页码:2202 / 2206
页数:5
相关论文
共 50 条
  • [21] Standardized aerobic treadmill ergometry in healthy subjects and patients with mitochondrial and non-mitochondrial myopathies
    Schmidt, M
    Kunkel, M
    SchuffWerner, P
    Naumann, M
    Reichmann, H
    Reimers, CD
    NERVENARZT, 1997, 68 (10): : 831 - 835
  • [22] Reproductive regulation of the mitochondrial stress response in Caenorhabditis elegans
    Charmpilas, Nikolaos
    Sotiriou, Aggeliki
    Axarlis, Konstantinos
    Tavernarakis, Nektarios
    Hoppe, Thorsten
    CELL REPORTS, 2024, 43 (06):
  • [23] Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans
    Yang Wang
    Yi Zhang
    Lianwan Chen
    Qian Liang
    Xiao-Ming Yin
    Long Miao
    Byung-Ho Kang
    Ding Xue
    Nature Communications, 7
  • [24] Decreased activities of mitochondrial respiratory chain complexes in non-mitochondrial respiratory chain diseases
    Hui, J
    Kirby, DM
    Thorburn, DR
    Boneh, A
    DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2006, 48 (02): : 132 - 136
  • [25] Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans
    Luz, Anthony L.
    Meyer, Joel N.
    MITOCHONDRION, 2016, 30 : 255 - 264
  • [26] Variation of the acceptor-anticodon interstem angles among mitochondrial and non-mitochondrial tRNAs
    Frazer-Abel, AA
    Hagerman, PJ
    JOURNAL OF MOLECULAR BIOLOGY, 2004, 343 (02) : 313 - 325
  • [27] Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans
    Bess, Amanda S.
    Crocker, Tracey L.
    Ryde, Ian T.
    Meyer, Joel N.
    NUCLEIC ACIDS RESEARCH, 2012, 40 (16) : 7916 - 7931
  • [28] Fractional synthesis rates of multiple isolated mitochondrial and non-mitochondrial proteins in rat skeletal muscle
    Jaleel, Abdul
    Morse, Dawn
    Klaus, Katherine
    Short, Kevin
    Ward, Lawrence
    Ford, Charles
    Nair, K. Sreekumaran
    FASEB JOURNAL, 2007, 21 (05): : A163 - A163
  • [29] Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity
    Newsholme, P.
    Haber, E. P.
    Hirabara, S. M.
    Rebelato, E. L. O.
    Procopi, J.
    Morgan, D.
    Oliveira-Emilio, H. C.
    Carpinelli, A. R.
    Curi, R.
    JOURNAL OF PHYSIOLOGY-LONDON, 2007, 583 (01): : 9 - 24
  • [30] UPRmt scales mitochondrial network expansion with protein synthesis via mitochondrial import in Caenorhabditis elegans
    Shpilka, Tomer
    Du, YunGuang
    Yang, Qiyuan
    Melber, Andrew
    Naresh, Nandhitha Uma
    Lavelle, Joshua
    Kim, Sookyung
    Liu, Pengpeng
    Weidberg, Hilla
    Li, Rui
    Yu, Jun
    Zhu, Lihua Julie
    Strittmatter, Lara
    Haynes, Cole M.
    NATURE COMMUNICATIONS, 2021, 12 (01)