A Novel Rayleigh Dynamical Model for Remote Sensing Data Interpretation

被引:10
|
作者
Bayer, Fabio M. [1 ,2 ]
Bayer, Debora M. [3 ]
Marinoni, Andrea [4 ]
Gamba, Paolo [5 ]
机构
[1] Univ Fed Santa Maria, Dept Stat, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Fed Santa Maria, LACESM, BR-97105900 Santa Maria, RS, Brazil
[3] Univ Fed Santa Maria, Dept Sanit & Environm Engn, BR-97105900 Santa Maria, RS, Brazil
[4] UiT Arctic Univ Norway, Dept Phys & Technol, NO-9037 Tromso, Norway
[5] Univ Pavia, Dept Elect Comp & Biomed Engn, Telecommun & Remote Sensing Lab, I-27100 Pavia, Italy
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 07期
关键词
Autoregressive processes; Synthetic aperture radar; Remote sensing; Data models; Wind speed; Feature extraction; Time series analysis; Land-use classification; machine learning; Rayleigh distribution; synthetic aperture radar (SAR); time series; wind speed; WIND-SPEED; TIME-SERIES; CLASSIFICATION; IMAGES; DISTRIBUTIONS; STATISTICS; WEIBULL; KERNEL; AREAS;
D O I
10.1109/TGRS.2020.2971345
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article introduces the Rayleigh autoregressive moving average (RARMA) model, which is useful to interpret multiple different sets of remotely sensed data, from wind measurements to multitemporal synthetic aperture radar (SAR) sequences. The RARMA model is indeed suitable for continuous, asymmetric, and nonnegative signals observed over time. It describes the mean of Rayleigh-distributed discrete-time signals by a dynamic structure including autoregressive (AR) and moving average (MA) terms, a set of regressors, and a link function. After presenting the conditional likelihood inference for the model parameters and the detection theory, in this article, a Monte Carlo simulation is performed to evaluate the finite signal length performance of the conditional likelihood inferences. Finally, the new model is applied first to sequences of wind speed measurements, and then to a multitemporal SAR image stack for land-use classification purposes. The results in these two test cases illustrate the usefulness of this novel dynamic model for remote sensing data interpretation.
引用
收藏
页码:4989 / 4999
页数:11
相关论文
共 50 条
  • [31] Remote sensing data assimilation for a prognostic phenology model
    Stoeckli, R.
    Rutishauser, T.
    Dragoni, D.
    O'Keefe, J.
    Thornton, P. E.
    Jolly, M.
    Lu, L.
    Denning, A. S.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2008, 113 (G4)
  • [32] A Spatial Data Model for Remote Sensing Image Retrieval
    Akcay, H. Gokhan
    Aksoy, Selim
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [33] ANALYSIS MODEL BASED RECOVERY OF REMOTE SENSING DATA
    Li, Xinghua
    Shen, Huanfeng
    Li, Huifang
    Zhang, Liangpei
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 2491 - 2494
  • [34] The Autonomic Model in Remote Sensing Data Processing System
    Li Ziyang
    Hu Jian
    Li Chuanrong
    Tang Lingli
    PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES 2010), 2010, : 278 - 280
  • [35] On the assimilation of multispectral remote sensing data in a SVAT model
    Sabater, JM
    Calvet, JC
    De Rosnay, V
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1331 - 1334
  • [36] TOPIC MODEL FOR REMOTE SENSING DATA: A COMPREHENSIVE REVIEW
    Zhu, Qiqi
    Wan, Jiangqin
    Zhong, Yanfei
    Guan, Qingfeng
    Zhang, Liangpei
    Li, Deren
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1373 - 1376
  • [37] Training for Remote Sensing Image Interpretation
    Haack, Barry
    Ryerson, Robert
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2017, 83 (12): : 795 - 806
  • [38] Distributed Deep Learning for Big Remote Sensing Data Processing on Apache Spark: Geological Remote Sensing Interpretation as a Case Study
    Long, Ao
    Han, Wei
    Huang, Xiaohui
    Li, Jiabao
    Wang, Yuewei
    Chen, Jia
    WEB AND BIG DATA, PT I, APWEB-WAIM 2023, 2024, 14331 : 96 - 110
  • [39] COMPUTER-AIDED ANALYSIS TECHNICIANS FOR REMOTE-SENSING DATA INTERPRETATION
    ANUTA, PE
    GEOPHYSICS, 1976, 41 (02) : 338 - 339
  • [40] Application of a multispectral interpretation algorithm to remote sensing data over the Baltic sea
    Krawczyk, H
    Neumann, A
    Walzel, T
    Hetscher, M
    Siegel, H
    OCEAN OPTICS XIII, 1997, 2963 : 234 - 239