Using machine learning for transient classification in searches for gravitational-wave counterparts

被引:11
|
作者
Stachie, Cosmin [1 ]
Coughlin, Michael W. [2 ,3 ]
Christensen, Nelson [1 ]
Muthukrishna, Daniel [4 ]
机构
[1] Univ Cote dAzur, Artemis, Observ Cote dAzur, CNRS, CS 34229, F-06304 Nice 4, France
[2] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[4] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
关键词
gravitational waves; ELECTROMAGNETIC COUNTERPARTS; IA SUPERNOVAE; IDENTIFICATION; GW170817; KILONOVA; MERGERS; STARS; I;
D O I
10.1093/mnras/staa1776
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The large sky localization regions offered by the gravitational-wave interferometers require efficient follow-up of the many counterpart candidates identified by the wide field-of-view telescopes. Given the restricted telescope time, the creation of prioritized lists of the many identified candidates becomes mandatory. Towards this end, we use astrorapid, a multiband photometric light-curve classifier, to differentiate between kilonovae, supernovae, and other possible transients. We demonstrate our method on the photometric observations of real events. In addition, the classification performance is tested on simulated light curves, both ideally and realistically sampled. We show that after only a few days of observations of an astronomical object, it is possible to rule out candidates as supernovae and other known transients.
引用
收藏
页码:1320 / 1331
页数:12
相关论文
共 50 条
  • [31] Predicting electromagnetic counterparts using low-latency gravitational-wave data products
    Stachie, Cosmin
    Coughlin, Michael W.
    Dietrich, Tim
    Antier, Sarah
    Bulla, Mattia
    Christensen, Nelson
    Essick, Reed
    Landry, Philippe
    Mours, Benoit
    Schianchi, Federico
    Toivonen, Andrew
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (03) : 4235 - 4248
  • [32] Rapid identification of strongly lensed gravitational-wave events with machine learning
    Goyal, Srashti
    Harikrishnan, D.
    Kapadia, Shasvath J.
    Ajith, Parameswaran
    [J]. PHYSICAL REVIEW D, 2021, 104 (12)
  • [33] Data mining and machine learning improve gravitational-wave detector sensitivity
    Vajente, Gabriele
    [J]. PHYSICAL REVIEW D, 2022, 105 (10)
  • [34] First machine learning gravitational-wave search mock data challenge
    Schaefer, Marlin B.
    Zelenka, Ondrej
    Nitz, Alexander H.
    Wang, He
    Wu, Shichao
    Guo, Zong-Kuan
    Cao, Zhoujian
    Ren, Zhixiang
    Nousi, Paraskevi
    Stergioulas, Nikolaos
    Iosif, Panagiotis
    Koloniari, Alexandra E.
    Tefas, Anastasios
    Passalis, Nikolaos
    Salemi, Francesco
    Vedovato, Gabriele
    Klimenko, Sergey
    Mishra, Tanmaya
    Bruegmann, Bernd
    Cuoco, Elena
    Huerta, E. A.
    Messenger, Chris
    Ohme, Frank
    [J]. PHYSICAL REVIEW D, 2023, 107 (02)
  • [35] Machine-learning nonstationary noise out of gravitational-wave detectors
    Vajente, G.
    Huang, Y.
    Isi, M.
    Driggers, J. C.
    Kissel, J. S.
    Szczepanczyk, M. J.
    Vitale, S.
    [J]. PHYSICAL REVIEW D, 2020, 101 (04)
  • [36] Flexible and Accurate Evaluation of Gravitational-wave Malmquist Bias with Machine Learning
    Talbot, Colm
    Thrane, Eric
    [J]. ASTROPHYSICAL JOURNAL, 2022, 927 (01):
  • [37] Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies
    Nancy Aggarwal
    Odylio D. Aguiar
    Andreas Bauswein
    Giancarlo Cella
    Sebastian Clesse
    Adrian Michael Cruise
    Valerie Domcke
    Daniel G. Figueroa
    Andrew Geraci
    Maxim Goryachev
    Hartmut Grote
    Mark Hindmarsh
    Francesco Muia
    Nikhil Mukund
    David Ottaway
    Marco Peloso
    Fernando Quevedo
    Angelo Ricciardone
    Jessica Steinlechner
    Sebastian Steinlechner
    Sichun Sun
    Michael E. Tobar
    Francisco Torrenti
    Caner Ünal
    Graham White
    [J]. Living Reviews in Relativity, 2021, 24
  • [38] Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies
    Aggarwal, Nancy
    Aguiar, Odylio D.
    Bauswein, Andreas
    Cella, Giancarlo
    Clesse, Sebastian
    Cruise, Adrian Michael
    Domcke, Valerie
    Figueroa, Daniel G.
    Geraci, Andrew
    Goryachev, Maxim
    Grote, Hartmut
    Hindmarsh, Mark
    Muia, Francesco
    Mukund, Nikhil
    Ottaway, David
    Peloso, Marco
    Quevedo, Fernando
    Ricciardone, Angelo
    Steinlechner, Jessica
    Steinlechner, Sebastian
    Sun, Sichun
    Tobar, Michael E.
    Torrenti, Francisco
    Unal, Caner
    White, Graham
    [J]. LIVING REVIEWS IN RELATIVITY, 2021, 24 (01)
  • [39] Improved stack-slide searches for gravitational-wave pulsars
    Cutler, C
    Gholami, I
    Krishnan, B
    [J]. PHYSICAL REVIEW D, 2005, 72 (04): : 1 - 19
  • [40] The Gravitational-wave Optical Transient Observer (GOTO)
    Dyer, Martin J.
    Ackley, Kendall
    Lyman, Joe
    Ulaczyk, Krzysztof
    Steeghs, Danny
    Galloway, Duncan K.
    Dhillon, Vik S.
    O'Brien, Paul
    Ramsay, Gavin
    Noysena, Kanthanakorn
    Kotak, Rubina
    Breton, Rene
    Nuttall, Laura
    Palle, Enric
    Pollacco, Don
    [J]. GROUND-BASED AND AIRBORNE TELESCOPES IX, 2022, 12182