Using machine learning for transient classification in searches for gravitational-wave counterparts

被引:11
|
作者
Stachie, Cosmin [1 ]
Coughlin, Michael W. [2 ,3 ]
Christensen, Nelson [1 ]
Muthukrishna, Daniel [4 ]
机构
[1] Univ Cote dAzur, Artemis, Observ Cote dAzur, CNRS, CS 34229, F-06304 Nice 4, France
[2] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[4] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
关键词
gravitational waves; ELECTROMAGNETIC COUNTERPARTS; IA SUPERNOVAE; IDENTIFICATION; GW170817; KILONOVA; MERGERS; STARS; I;
D O I
10.1093/mnras/staa1776
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The large sky localization regions offered by the gravitational-wave interferometers require efficient follow-up of the many counterpart candidates identified by the wide field-of-view telescopes. Given the restricted telescope time, the creation of prioritized lists of the many identified candidates becomes mandatory. Towards this end, we use astrorapid, a multiband photometric light-curve classifier, to differentiate between kilonovae, supernovae, and other possible transients. We demonstrate our method on the photometric observations of real events. In addition, the classification performance is tested on simulated light curves, both ideally and realistically sampled. We show that after only a few days of observations of an astronomical object, it is possible to rule out candidates as supernovae and other known transients.
引用
收藏
页码:1320 / 1331
页数:12
相关论文
共 50 条
  • [1] Optimizing vetoes for gravitational-wave transient searches
    Essick, R.
    Blackburn, L.
    Katsavounidis, E.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (15)
  • [2] FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS
    Aasi, J.
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adams, T.
    Adhikari, R. X.
    Affeldt, C.
    Agathos, M.
    Aggarwal, N.
    Aguiar, O. D.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Ceron, E. Amador
    Amariutei, D.
    Anderson, R. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J.
    Ast, S.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Austin, L.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barker, D.
    Barnum, S. H.
    Barone, F.
    Barr, B.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Basti, A.
    Batch, J.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (01):
  • [3] Driving unmodeled gravitational-wave transient searches using astrophysical information
    Bacon, P.
    Gayathri, V.
    Chassande-Mottin, E.
    Pai, A.
    Salemi, F.
    Vedovato, G.
    [J]. PHYSICAL REVIEW D, 2018, 98 (02)
  • [4] Hunting Electromagnetic Counterparts of Gravitational-wave Events Using the Zwicky Transient Facility
    Ghosh, Shaon
    Chatterjee, Deep
    Kaplan, David L.
    Brady, Patrick R.
    Van Sistine, Angela
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2017, 129 (981)
  • [5] Training strategies for deep learning gravitational-wave searches
    Schaefer, Marlin B.
    Zelenka, Ondrej
    Nitz, Alexander H.
    Ohme, Frank
    Bruegmann, Bernd
    [J]. PHYSICAL REVIEW D, 2022, 105 (04)
  • [6] Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach
    Cavaglia, M.
    Gaudio, S.
    Hansen, T.
    Staats, K.
    Szczepanczyk, M.
    Zanolin, M.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (01):
  • [7] Electromagnetic counterparts of gravitational-wave signals
    Nuttall, Laura K.
    Berry, Christopher P. L.
    [J]. Astronomy and Geophysics, 2021, 62 (04): : 415 - 421
  • [8] Electromagnetic counterparts of gravitational-wave signals
    Nuttall, Laura K.
    Berry, Christopher P. L.
    [J]. ASTRONOMY & GEOPHYSICS, 2021, 62 (04)
  • [9] Astrophysical signal consistency test adapted for gravitational-wave transient searches
    Gayathri, V
    Bacon, P.
    Pai, A.
    Chassande-Mottin, E.
    Salem, F.
    Vedovato, G.
    [J]. PHYSICAL REVIEW D, 2019, 100 (12)
  • [10] Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-Wave Optical Transient Observer (GOTO-4)
    Gompertz, B. P.
    Cutter, R.
    Steeghs, D.
    Galloway, D. K.
    Lyman, J.
    Ulaczyk, K.
    Dyer, M. J.
    Ackley, K.
    Dhillon, V. S.
    O'Brien, P. T.
    Ramsay, G.
    Poshyachinda, S.
    Kotak, R.
    Nuttall, L.
    Breton, R. P.
    Palle, E.
    Pollacco, D.
    Thrane, E.
    Aukkaravittayapun, S.
    Awiphan, S.
    Brown, M. J., I
    Burhanudin, U.
    Chote, P.
    Chrimes, A. A.
    Daw, E.
    Duffy, C.
    Eyles-Ferris, R. A. J.
    Heikkila, T.
    Irawati, P.
    Kennedy, M. R.
    Killestein, T.
    Levan, A. J.
    Littlefair, S.
    Makrygianni, L.
    Marsh, T.
    Sanchez, D. Mata
    Mattila, S.
    Maund, J.
    McCormac, J.
    Mkrtichian, D.
    Mong, Y-L
    Mullaney, J.
    Muller, B.
    Obradovic, A.
    Rol, E.
    Sawangwit, U.
    Stanway, E. R.
    Starling, R. L. C.
    Strom, P. A.
    Tooke, S.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (01) : 726 - 738