Influence of He implantation dose on strain relaxation of pseudomorphic SiGe/Si heterostructure

被引:1
|
作者
Liu, L. J. [1 ,2 ]
Xue, Z. Y. [1 ]
Chen, D. [1 ,3 ]
Mu, Z. Q. [1 ,2 ]
Bian, J. T. [1 ]
Jiang, H. T. [1 ]
Wei, X. [1 ]
Di, Z. F. [1 ]
Zhang, M. [1 ]
Wang, X. [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
[3] Lanzhou Univ, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Strain relaxation; Dislocation; Epitaxy; Implantation; MISFIT DISLOCATIONS; SURFACE-MORPHOLOGY; EPITAXY; LAYERS; MECHANISM; SILICON;
D O I
10.1016/j.tsf.2013.06.093
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of He implantation dose on the strain relaxation of 180nm Si0.75Ge0.25/Si layers epitaxially grown on silicon is investigated. It is found that the strain relaxation of SiGe epilayer is facilitated by helium implantation, and the degree of strain relaxation increases with implantation dose. During the strain relaxation, misfit dislocation are mainly formed at the SiGe/Si interface, while no threading dislocations are observed in the epilayer. The dislocation loops emitted by the overpressurized He-filled nano-cavities promotes strain relaxation via both the propagation of two threading dislocation segments through the epilayer and the extension of the misfit dislocation segment located at the SiGe/Si heterointerface. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 133
页数:5
相关论文
共 50 条
  • [21] Enhancement of strain relaxation of SiGe thin layers by pre-ion-implantation into Si substrates
    Sawano, K. (sawano@p.rcast.u-tokyo.ac.jp), 1600, Japan Society of Applied Physics (42):
  • [22] MECHANISMS OF STRAIN RELAXATION IN SI/SIGE HETEROSTRUCTURES AND SUPERLATTICES
    HOCKLY, M
    TUPPEN, CG
    GIBBINGS, CJ
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1989, (100): : 351 - 356
  • [23] MECHANISMS OF STRAIN RELAXATION IN SI/SIGE HETEROSTRUCTURES AND SUPERLATTICES
    HOCKLY, M
    TUPPEN, CG
    GIBBINGS, CJ
    MICROSCOPY OF SEMICONDUCTING MATERIALS 1989, 1989, 100 : 351 - 356
  • [24] Enhanced strain relaxation of epitaxial SiGe layers on Si(100) after H+ ion implantation
    Holländer, B
    Mantl, S
    Liedtke, R
    Mesters, S
    Herzog, HJ
    Kibbel, H
    Hackbarth, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1999, 148 (1-4): : 200 - 210
  • [25] Low-temperature relaxation of ion-irradiated pseudomorphic SiGe/Si heterostructures
    Avrutin, V.S.
    Vyatkin, A.F.
    Izyumskaya, N.F.
    Smirnova, I.A.
    Vdovin, V.I.
    Yugova, T.G.
    Izvestiya Akademii Nauk. Ser. Fizicheskaya, 2002, 66 (02): : 176 - 179
  • [26] Influence of He implantation conditions on strain relaxation and threading dislocation density in Si0.8Ge0.2 virtual substrates
    Cai, J
    Mooney, PM
    Christiansen, SH
    Chen, H
    Chu, JO
    Ott, JA
    HIGH-MOBILITY GROUP-IV MATERIALS AND DEVICES, 2004, 809 : 51 - 56
  • [27] SIGE/SI SUPERLATTICES - STRAIN INFLUENCE AND DEVICES
    KASPER, E
    HETEROSTRUCTURES ON SILICON : ONE STEP FURTHER WITH SILICON, 1989, 160 : 101 - 119
  • [28] Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation
    Shao, L
    Lin, Y
    Lee, JK
    Jia, QX
    Wang, YQ
    Nastasi, M
    Thompson, PE
    Theodore, ND
    Chu, PK
    Alford, TL
    Mayer, JW
    Chen, P
    Lau, SS
    APPLIED PHYSICS LETTERS, 2005, 87 (09)
  • [29] The Influence of Strain Relaxation on the Electrical Properties of Submicron Si/SiGe Resonant-Tunneling Diodes
    P. W. Lukey
    J. Caro
    T. Zijlstra
    E. van der Drift
    S. Radelaar
    Analog Integrated Circuits and Signal Processing, 2000, 24 (1) : 27 - 35
  • [30] The influence of strain relaxation on the electrical properties of submicron Si/SiGe resonant-tunneling diodes
    Lukey, PW
    Caro, J
    Zijlstra, T
    van der Drift, E
    Radelaar, S
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2000, 24 (01) : 27 - 35