WEIGHTED NORM INEQUALITIES FOR PARAMETRIC LITTLEWOOD-PALEY OPERATORS

被引:1
|
作者
Li, Bo [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
来源
关键词
Littlewood-Paley operator; Hardy space; Muckenhoupt weight; Musielak-Orlicz function; ORLICZ-HARDY-SPACES; BOUNDEDNESS;
D O I
10.7153/mia-2019-22-34
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the boundedness of parametric Littlewood-Paley operators from Musielak-Orlicz Hardy space to Musielak-Orlicz space. The endpoint weak type estimates are also obtained. Part of these results are new even for classical Hardy space of Fefferman and Stein.
引用
收藏
页码:487 / 507
页数:21
相关论文
共 50 条
  • [11] Weighted estimates for the multilinear commutators of the Littlewood-Paley operators
    XUE QingYing DING Yong School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing China
    ScienceinChina(SeriesA:Mathematics), 2009, 52 (09) : 1849 - 1868
  • [12] Parameterized Littlewood-Paley Operators on Weighted Herz Spaces
    Yueshan Wang
    Aiqing Chen
    Analysis in Theory and Applications, 2017, 33 (04) : 301 - 315
  • [13] Weighted estimates for the multilinear commutators of the Littlewood-Paley operators
    QingYing Xue
    Yong Ding
    Science in China Series A: Mathematics, 2009, 52 : 1849 - 1868
  • [14] Weighted estimates for the multilinear commutators of the Littlewood-Paley operators
    Xue QingYing
    Ding Yong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (09): : 1849 - 1868
  • [15] Weighted LP boundedness for parametrized Littlewood-Paley operators
    Xue, Qingying
    Ding, Yong
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (04): : 1143 - 1165
  • [16] Weighted estimates for the multilinear commutators of the Littlewood-Paley operators
    XUE QingYing & DING Yong School of Mathematical Sciences
    Science China Mathematics, 2009, (09) : 1849 - 1868
  • [17] DISC MULTIPLIER AND LITTLEWOOD-PALEY THEOREM ON WEIGHTED NORM SPACES
    潘翼彪
    Science Bulletin, 1985, (10) : 1296 - 1298
  • [18] Vector valued inequalities and Littlewood-Paley operators on Hardy spaces
    Sato, Shuichi
    HOKKAIDO MATHEMATICAL JOURNAL, 2019, 48 (01) : 61 - 84
  • [19] On multilinear Littlewood-Paley operators
    Chen, Xi
    Xue, Qingying
    Yabuta, Kozo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 : 25 - 40
  • [20] Commutators of Littlewood-Paley operators
    Chen YanPing
    Ding Yong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (11): : 2493 - 2505