Beta Process Joint Dictionary Learning for Coupled Feature Spaces with Application to Single Image Super-Resolution

被引:138
|
作者
He, Li [1 ]
Qi, Hairong [1 ]
Zaretzki, Russell [1 ]
机构
[1] Univ Tennessee, Knoxville, TN 37996 USA
关键词
D O I
10.1109/CVPR.2013.51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of learning over-complete dictionaries for the coupled feature spaces, where the learned dictionaries also reflect the relationship between the two spaces. A Bayesian method using a beta process prior is applied to learn the over-complete dictionaries. Compared to previous couple feature spaces dictionary learning algorithms, our algorithm not only provides dictionaries that customized to each feature space, but also adds more consistent and accurate mapping between the two feature spaces. This is due to the unique property of the beta process model that the sparse representation can be decomposed to values and dictionary atom indicators. The proposed algorithm is able to learn sparse representations that correspond to the same dictionary atoms with the same sparsity but different values in coupled feature spaces, thus bringing consistent and accurate mapping between coupled feature spaces. Another advantage of the proposed method is that the number of dictionary atoms and their relative importance may be inferred non-parametrically. We compare the proposed approach to several state-of-the-art dictionary learning methods by applying this method to single image super-resolution. The experimental results show that dictionaries learned by our method produces the best super-resolution results compared to other state-of-the-art methods.
引用
下载
收藏
页码:345 / 352
页数:8
相关论文
共 50 条
  • [41] Single image super-resolution via blind blurring estimation and dictionary learning
    Zhao, Xiaole
    Wu, Yadong
    Tian, Jinsha
    Zhang, Hongying
    NEUROCOMPUTING, 2016, 212 : 3 - 11
  • [42] Modified Dictionary Learning Method For Sparsity Based Single Image Super-Resolution
    Rahiman, Abdu
    U, Rohit
    George, Sudhish N.
    2016 3rd International Conference on Recent Advances in Information Technology (RAIT), 2016, : 473 - 477
  • [43] Single Image Super-Resolution Based on Deep Learning Features and Dictionary Model
    Zhao, Liling
    Sun, Quansen
    Zhang, Zelin
    IEEE ACCESS, 2017, 5 : 17126 - 17135
  • [44] SINGLE DEPTH IMAGE SUPER-RESOLUTION WITH MULTIPLE RESIDUAL DICTIONARY LEARNING AND REFINEMENT
    Zhao, Lijun
    Bai, Huihui
    Liang, Jie
    Wang, Anhong
    Zhao, Yao
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 739 - 744
  • [45] Group-based single image super-resolution with online dictionary learning
    Lu, Xuan
    Wang, Dingwen
    Shi, Wenxuan
    Deng, Dexiang
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2016,
  • [46] Depth map Super-Resolution based on joint dictionary learning
    Liu, Li-Wei
    Wang, Liang-Hao
    Zhang, Ming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (02) : 467 - 477
  • [47] Depth map Super-Resolution based on joint dictionary learning
    Li-Wei Liu
    Liang-Hao Wang
    Ming Zhang
    Multimedia Tools and Applications, 2015, 74 : 467 - 477
  • [48] SRFeat: Single Image Super-Resolution with Feature Discrimination
    Park, Seong-Jin
    Son, Hyeongseok
    Cho, Sunghyun
    Hong, Ki-Sang
    Lee, Seungyong
    COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 455 - 471
  • [49] Dual-branch feature learning network for single image super-resolution
    Yu L.
    Deng Q.
    Liu B.
    Wu H.
    Hu H.
    Multimedia Tools and Applications, 2023, 82 (28) : 43297 - 43314
  • [50] Single Image Super-Resolution via Projective Dictionary Learning with Anchored Neighborhood Regression
    Feng, Yihui
    Zhang, Yongbing
    Zhang, Yulun
    Shen, Tao
    Dai, Qionghai
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,