The continuum parabolic Anderson model with a half-Laplacian and periodic noise

被引:0
|
作者
Dunlap, Alexander [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
parabolic Anderson model; fractional Laplacian;
D O I
10.1214/20-ECP342
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct solutions of a renormalized continuum fractional parabolic Anderson model, formally given by partial derivative(t)u = -(-Delta)(1/2) u + xi u, where xi is a periodic spatial white noise. To be precise, we construct limits as epsilon -> 0 of solutions of partial derivative(t)u(epsilon) = -(-Delta)(1/2)u(epsilon) + (xi(epsilon) - C-epsilon)u(epsilon), where xi(epsilon) is a mollification of xi at scale epsilon and C-epsilon is a logarithmically diverging renormalization constant. We use a simple renormalization scheme based on that of Hairer and Labbe, "A simple construction of the continuum parabolic Anderson model on R-2."
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] LANDIS-TYPE CONJECTURE FOR THE HALF-LAPLACIAN
    Kow, Pu-Zhao
    Wang, Jenn-Nan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (07) : 2951 - 2962
  • [2] Lyapunov exponent for the parabolic anderson model with levy noise
    Cranston, M
    Mountford, TS
    Shiga, T
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (03) : 321 - 355
  • [3] Parabolic Anderson model with rough or critical Gaussian noise
    Chen, Xia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 941 - 976
  • [4] Optimal Regularity Results Related to a Partition Problem Involving the Half-Laplacian
    Zilio, Alessandro
    [J]. NEW TRENDS IN SHAPE OPTIMIZATION, 2015, 166 : 301 - 314
  • [5] Saddle-shaped solutions of bistable elliptic equations involving the half-Laplacian
    Cinti, Eleonora
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2013, 12 (03) : 623 - 664
  • [6] A simple construction of the continuum parabolic Anderson model on R2
    Hairer, Martin
    Labbe, Cyril
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 11
  • [7] Lyapunov exponent for the parabolic anderson model with lévy noise
    M. Cranston
    T. S. Mountford
    T. Shiga
    [J]. Probability Theory and Related Fields, 2005, 132 : 321 - 355
  • [8] Spatial averages for the parabolic Anderson model driven by rough noise
    Nualart, David
    Song, Xiaoming
    Zheng, Guangqu
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 907 - 943
  • [9] Parabolic Anderson model with a fractional Gaussian noise that is rough in time
    Chen, Xia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 792 - 825
  • [10] Hybridization fluctuations in the half-filled periodic Anderson model
    Hu, Danqing
    Dong, Jian-Jun
    Yang, Yi-feng
    [J]. PHYSICAL REVIEW B, 2019, 100 (19)