Deep Spatial-Semantic Attention for Fine-Grained Sketch-Based Image Retrieval

被引:152
|
作者
Song, Jifei [1 ]
Yu, Qian
Song, Yi-Zhe
Xiang, Tao
Hospedales, Timothy M.
机构
[1] Queen Mary Univ London, London, England
关键词
D O I
10.1109/ICCV.2017.592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human sketches are unique in being able to capture both the spatial topology of a visual object, as well as its subtle appearance details. Fine-grained sketch-based image retrieval (FG-SBIR) importantly leverages on such fine-grained characteristics of sketches to conduct instance-level retrieval of photos. Nevertheless, human sketches are often highly abstract and iconic, resulting in severe misalignments with candidate photos which in turn make subtle visual detail matching difficult. Existing FG-SBIR approaches focus only on coarse holistic matching via deep cross-domain representation learning, yet ignore explicitly accounting for fine-grained details and their spatial context. In this paper, a novel deep FG-SBIR model is proposed which differs significantly from the existing models in that: (1) It is spatially aware, achieved by introducing an attention module that is sensitive to the spatial position of visual details; (2) It combines coarse and fine semantic information via a shortcut connection fusion block; and (3) It models feature correlation and is robust to misalignments between the extracted features across the two domains by introducing a novel higher-order learnable energy function (HOLEF) based loss. Extensive experiments show that the proposed deep spatial-semantic attention model significantly outperforms the state-of-the-art.
引用
收藏
页码:5552 / 5561
页数:10
相关论文
共 50 条
  • [1] Fine-Grained Color Sketch-Based Image Retrieval
    Xia, Yu
    Wang, Shuangbu
    Li, Yanran
    You, Lihua
    Yang, Xiaosong
    Zhang, Jian Jun
    [J]. ADVANCES IN COMPUTER GRAPHICS, CGI 2019, 2019, 11542 : 424 - 430
  • [2] Adaptive Fine-Grained Sketch-Based Image Retrieval
    Bhunia, Ayan Kumar
    Sain, Aneeshan
    Shah, Parth Hiren
    Gupta, Animesh
    Chowdhury, Pinaki Nath
    Xiang, Tao
    Song, Yi-Zhe
    [J]. COMPUTER VISION, ECCV 2022, PT XXXVII, 2022, 13697 : 163 - 181
  • [3] Generalising Fine-Grained Sketch-Based Image Retrieval
    Pang, Kaiyue
    Li, Ke
    Yang, Yongxin
    Zhang, Honggang
    Hospedales, Timothy M.
    Xiang, Tao
    Song, Yi-Zhe
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 677 - 686
  • [4] Deep Multimodal Embedding Model for Fine-grained Sketch-based Image Retrieval
    Huang, Fei
    Cheng, Yong
    Jin, Cheng
    Zhang, Yuejie
    Zhang, Tao
    [J]. SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 929 - 932
  • [5] Gradually focused fine-grained sketch-based image retrieval
    Zhu, Ming
    Chen, Chun
    Wang, Nian
    Tang, Jun
    Bao, Wenxia
    [J]. PLOS ONE, 2019, 14 (05):
  • [6] Conditional Stroke Recovery for Fine-Grained Sketch-Based Image Retrieval
    Ling, Zhixin
    Xing, Zhen
    Zhou, Jian
    Zhou, Xiangdong
    [J]. COMPUTER VISION, ECCV 2022, PT XXVI, 2022, 13686 : 722 - 738
  • [7] Fine-Grained Instance-Level Sketch-Based Image Retrieval
    Yu, Qian
    Song, Jifei
    Song, Yi-Zhe
    Xiang, Tao
    Hospedales, Timothy M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (02) : 484 - 500
  • [8] Fine-Grained Instance-Level Sketch-Based Image Retrieval
    Qian Yu
    Jifei Song
    Yi-Zhe Song
    Tao Xiang
    Timothy M. Hospedales
    [J]. International Journal of Computer Vision, 2021, 129 : 484 - 500
  • [9] Multi-feature fusion for fine-grained sketch-based image retrieval
    Zhu, Ming
    Zhao, Chen
    Wang, Nian
    Tang, Jun
    Yan, Pu
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 82 (24) : 38067 - 38076
  • [10] Dark-Aware Network For Fine-Grained Sketch-Based Image Retrieval
    Yang, Zhantao
    Zhu, Xiaoguang
    Qian, Jiuchao
    Liu, Peilin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 264 - 268