Conditional Stroke Recovery for Fine-Grained Sketch-Based Image Retrieval

被引:1
|
作者
Ling, Zhixin [1 ]
Xing, Zhen [1 ]
Zhou, Jian [1 ]
Zhou, Xiangdong [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
来源
关键词
Fine-Grained; SBIR; FG-SBIR; Double-anchor InfoNCE;
D O I
10.1007/978-3-031-19809-0_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The key to Fine-Grained Sketch Based Image Retrieval (FG-SBIR) is to establish fine-grained correspondence between sketches and images. Since sketches only consist of abstract strokes, stroke recognition ability plays an important role in FG-SBIR. However, existing works usually ignore the unique feature of sketches and treat images and sketches equally. Targeting at this problem, we propose Conditional Stroke Recovery (CSR) to enhance stroke recognition ability for FG-SBIR, in which we introduce an auxiliary task that requires the network recover the strokes using the paired image as condition. In this way, the network learns better to match the strokes with corresponding image elements. To complete the auxiliary task, we propose an unsupervised stroke disorder algorithm, which does well in stroke extraction and sketch augmentation. In addition, we figure out two weaknesses of the common triplet loss and propose double-anchor InfoNCE loss to reduce cosine distances between sketch-image pairs. Comprehensive experiments using various backbones are conducted on four datasets (i.e., QMUL-Shoe, QMUL-Chair, QMUL-ShoeV2, and Sketchy). In terms of acc@1, our method outperforms previous works by a great margin.
引用
收藏
页码:722 / 738
页数:17
相关论文
共 50 条
  • [1] Adaptive Fine-Grained Sketch-Based Image Retrieval
    Bhunia, Ayan Kumar
    Sain, Aneeshan
    Shah, Parth Hiren
    Gupta, Animesh
    Chowdhury, Pinaki Nath
    Xiang, Tao
    Song, Yi-Zhe
    [J]. COMPUTER VISION, ECCV 2022, PT XXXVII, 2022, 13697 : 163 - 181
  • [2] Fine-Grained Color Sketch-Based Image Retrieval
    Xia, Yu
    Wang, Shuangbu
    Li, Yanran
    You, Lihua
    Yang, Xiaosong
    Zhang, Jian Jun
    [J]. ADVANCES IN COMPUTER GRAPHICS, CGI 2019, 2019, 11542 : 424 - 430
  • [3] Generalising Fine-Grained Sketch-Based Image Retrieval
    Pang, Kaiyue
    Li, Ke
    Yang, Yongxin
    Zhang, Honggang
    Hospedales, Timothy M.
    Xiang, Tao
    Song, Yi-Zhe
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 677 - 686
  • [4] Gradually focused fine-grained sketch-based image retrieval
    Zhu, Ming
    Chen, Chun
    Wang, Nian
    Tang, Jun
    Bao, Wenxia
    [J]. PLOS ONE, 2019, 14 (05):
  • [5] Fine-Grained Instance-Level Sketch-Based Image Retrieval
    Yu, Qian
    Song, Jifei
    Song, Yi-Zhe
    Xiang, Tao
    Hospedales, Timothy M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (02) : 484 - 500
  • [6] Fine-Grained Instance-Level Sketch-Based Image Retrieval
    Qian Yu
    Jifei Song
    Yi-Zhe Song
    Tao Xiang
    Timothy M. Hospedales
    [J]. International Journal of Computer Vision, 2021, 129 : 484 - 500
  • [7] Deep Multimodal Embedding Model for Fine-grained Sketch-based Image Retrieval
    Huang, Fei
    Cheng, Yong
    Jin, Cheng
    Zhang, Yuejie
    Zhang, Tao
    [J]. SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 929 - 932
  • [8] Multi-feature fusion for fine-grained sketch-based image retrieval
    Zhu, Ming
    Zhao, Chen
    Wang, Nian
    Tang, Jun
    Yan, Pu
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 82 (24) : 38067 - 38076
  • [9] Dark-Aware Network For Fine-Grained Sketch-Based Image Retrieval
    Yang, Zhantao
    Zhu, Xiaoguang
    Qian, Jiuchao
    Liu, Peilin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 264 - 268
  • [10] Multi-feature fusion for fine-grained sketch-based image retrieval
    Ming Zhu
    Chen Zhao
    Nian Wang
    Jun Tang
    Pu Yan
    [J]. Multimedia Tools and Applications, 2023, 82 : 38067 - 38076