Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme

被引:114
|
作者
Zou, Wenli [1 ]
Kalescky, Robert [1 ]
Kraka, Elfi [1 ]
Cremer, Dieter [1 ]
机构
[1] So Methodist Univ, Dept Chem, Dallas, TX 75275 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 137卷 / 08期
基金
美国国家科学基金会;
关键词
CH STRETCHING FREQUENCIES; BOND LENGTHS; DISSOCIATION-ENERGIES; COMPLIANCE CONSTANTS; N-ALKANES; SPECTRA; FORCE; STRENGTHS; SIGNATURES; MATRIX;
D O I
10.1063/1.4747339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Information on the electronic structure of a molecule and its chemical bonds is encoded in the molecular normal vibrational modes. However, normal vibrational modes result from a coupling of local vibrational modes, which means that only the latter can provide detailed insight into bonding and other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)] represent a unique set of local modes that is directly related to the normal vibrational modes. The missing link between these two sets of modes are the compliance constants of Decius, which turn out to be the reciprocals of the local mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode frequencies of any molecule can be converted into its normal mode frequencies with the help of an adiabatic connection scheme that defines the coupling of the local modes in terms of coupling frequencies and reveals how avoided crossings between the local modes lead to changes in the character of the normal modes. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747339]
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The vibrational modes of glasses
    Courtens, E
    Foret, M
    Hehlen, B
    Vacher, R
    SOLID STATE COMMUNICATIONS, 2001, 117 (03) : 187 - 200
  • [32] Vibrational modes of nanolines
    Heyliger, Paul R.
    Flannery, Colm M.
    Johnson, Ward L.
    NANOTECHNOLOGY, 2008, 19 (14)
  • [33] CHARACTERIZATION OF VIBRATIONAL TRANSITION MODES BY USE OF NORMAL FORMS
    ABBATE, S
    GHISLETTI, D
    GIORGILLI, A
    LESPADE, L
    LONGHI, G
    THEORETICA CHIMICA ACTA, 1993, 87 (03): : 215 - 232
  • [34] NORMAL VIBRATIONAL-MODES OF FINITE PIEZOCERAMIC CYLINDERS
    BALABAEV, SM
    IVINA, NF
    SOVIET PHYSICS ACOUSTICS-USSR, 1990, 36 (02): : 111 - 113
  • [35] Non-linear vibrational normal modes of biomolecules
    Farantos, Stavros C.
    ICCSA 2007: Proceedings of the Fifth International Conference on Computational Science and Applications, 2007, : 444 - 450
  • [36] Robust normal modes in vibrational circular dichroism spectra
    Nicu, Valentin Paul
    Baerends, Evert Jan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (29) : 6107 - 6118
  • [37] VISUALIZING VIBRATIONAL NORMAL-MODES ON THE MACINTOSH MICROCOMPUTER
    ALLAN, DS
    SEEGER, DM
    KORZENIEWSKI, C
    APPLIED SPECTROSCOPY, 1990, 44 (09) : 1579 - 1581
  • [38] Electronic potentials of normal vibrational modes in SbSI crystals
    Audzijonis, A
    Zigas, L
    Narusis, J
    Zaltauskas, R
    Audzijoniene, L
    FERROELECTRICS, 2002, 274 : 1 - 15
  • [39] Effects of Hydrogen Bonding on Vibrational Normal Modes of Pyrimidine
    Howard, Austin A.
    Tschumper, Gregory S.
    Hammer, Nathan I.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (25): : 6803 - 6810
  • [40] Vibrational local modes of a-SiO2:H and variation of local modes in different local environments
    Lin, SY
    JOURNAL OF APPLIED PHYSICS, 1997, 82 (12) : 5976 - 5982