Asymptotic normality of high level-large time crossings of a Gaussian process

被引:0
|
作者
Dalmao, Federico [1 ]
Leon, Jose R. [2 ,3 ]
Mordecki, Ernesto [4 ]
Mourareau, Stephane [5 ]
机构
[1] Univ Republ, DMEL, Salto, Uruguay
[2] Univ Republica, IMERL, Montevideo, Uruguay
[3] Univ Cent Venezuela, Escuela Matemat, Caracas, Venezuela
[4] Univ Republica, CMAT, Montevideo, Uruguay
[5] Univ Paris Est Marne la Vallee, LAMA, Champs Sur Marne, France
关键词
High-level crossings; Rice formula; Mixing process; Dependent CLT; THEOREM; NUMBER; ZEROS;
D O I
10.1016/j.spa.2018.05.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the asymptotic normality of the standardized number of crossings of a centered stationary mixing Gaussian process when both the level and the time horizon go to infinity in such a way that the expected number of crossings also goes to infinity. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1349 / 1370
页数:22
相关论文
共 50 条
  • [31] High Level Exceeding Probability of a Gaussian Process with Constant Variance and Variable Smoothness
    Koluzanov, F. E.
    Piterbarg, V. I.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2024, 79 (04) : 169 - 174
  • [32] LIMIT THEOREM FOR NUMBER OF HIGH-LEVEL CROSSCUTS BY STATIONARY GAUSSIAN PROCESS
    BELYAEV, YK
    DOKLADY AKADEMII NAUK SSSR, 1967, 173 (04): : 739 - &
  • [34] On the asymptotic distribution of the maximum sample spectral coherence of Gaussian time series in the high dimensional regime
    Loubaton, Philippe
    Rosuel, Alexis
    Vallet, Pascal
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 194
  • [35] Gaussian Process Phase Interpolation for estimating the asymptotic phase of a limit cycle oscillator from time series data
    Yamamoto, Taichi
    Nakao, Hiroya
    Kobayashi, Ryota
    CHAOS SOLITONS & FRACTALS, 2025, 191
  • [36] ASYMPTOTIC ESTIMATE OF 2ND MOMENT OF NUMBER OF CROSSINGS OF A LINE KT+A BY GAUSSIAN STATIONARY PROCESS AND ITS APPLICATION TO RARE-FIELD GAS THEORY
    MIROSHIN, RN
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1976, (03): : 101 - 108
  • [37] Design of a High Level Controller for Active Foot Prostheses using Gaussian Process Intent Recognition
    Eslamy, Mahdy
    Alipour, Khalil
    2017 5TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM 2017), 2017, : 439 - 444
  • [38] Multistep Ahead Groundwater Level Time-Series Forecasting Using Gaussian Process Regression and ANFIS
    Raghavendra, N. Sujay
    Deka, Paresh Chandra
    ADVANCED COMPUTING AND SYSTEMS FOR SECURITY, VOL 2, 2016, 396 : 289 - 302
  • [39] Online Stochastic Variational Gaussian Process Mapping for Large-Scale Bathymetric SLAM in Real Time
    Torroba, Ignacio
    Cella, Marco
    Teran, Aldo
    Rolleberg, Niklas
    Folkesson, John
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (06): : 3150 - 3157
  • [40] Robust Gaussian Process Regression for Real-Time High Precision GPS Signal Enhancement
    Lin, Ming
    Song, Xiaomin
    Qian, Qi
    Li, Hao
    Sun, Liang
    Zhu, Shenghuo
    Jin, Rong
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2838 - 2847