SAR-Based Wind Resource Statistics in the Baltic Sea

被引:89
|
作者
Hasager, Charlotte B. [1 ]
Badger, Merete [1 ]
Pena, Alfredo [1 ]
Larsen, Xiaoli G. [1 ]
Bingol, Ferhat [1 ]
机构
[1] Riso DTU, Wind Energy Div, DK-4000 Roskilde, Denmark
关键词
offshore wind; satellite SAR; wind energy; wind resource; SYNTHETIC-APERTURE RADAR; SPEED; MODEL; VALIDATION; FLOW; MAPS;
D O I
10.3390/rs3010117
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR) images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps and from 10 meteorological masts, established specifically for wind energy in the study area, are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a root mean square error of 1.17 m s(-1), bias of -0.25 m s(-1), standard deviation of 1.88 m s(-1) and correlation coefficient of R-2 0.783. Wind directions from a global atmospheric model, interpolated in time and space, are used as input to the geophysical model function CMOD-5 for SAR wind retrieval. Wind directions compared to mast observations show a root mean square error of 6.29 degrees with a bias of 7.75 degrees, standard deviation of 20.11 degrees and R-2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate similar to 2% for A but similar to 16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images show wind power density values to range from 300 to 800 W m(-2) for the 14 existing and 42 planned wind farms.
引用
收藏
页码:117 / 144
页数:28
相关论文
共 50 条
  • [21] Divider-less SAR-based ADDLL
    Hwang, C. -S.
    Chu, T. -L.
    Chen, Y. -G.
    [J]. ELECTRONICS LETTERS, 2018, 54 (02) : 62 - U9
  • [22] SAR-based land cover classification of Kuwait
    Kwarteng, A. Y.
    Dobson, M. C.
    Kellndorfer, J.
    Williams, R.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (23) : 6739 - 6778
  • [23] Swell hindcast statistics for the Baltic Sea
    Bjorkqvist, Jan-Victor
    Part, Siim
    Alari, Victor
    Rikka, Sander
    Lindgren, Elisa
    Tuomi, Laura
    [J]. OCEAN SCIENCE, 2021, 17 (06) : 1815 - 1829
  • [24] SAR-based technique for soil permittivity estimation
    Alvarez Lopez, Yuri
    Garcia Fernandez, Maria
    Arboleya Arboleya, Ana
    Gonzalez-Valdes, Borja
    Rodriguez Vaqueiro, Yolanda
    Las-Heras Andres, Fernando
    Pino Garcia, Antonio
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (18) : 5168 - 5185
  • [25] A SAR-based interesting rule mining algorithm
    Li, JX
    Chen, GQ
    [J]. 2002 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY PROCEEDINGS, 2002, : 178 - 183
  • [26] A SAR-based algorithm for imaging of landmines with GPR
    Kovalenko, Vsevolod
    Yarovoy, Alexander
    Ligthart, Leo P.
    [J]. IST 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL WORKSHOP ON IMAGING SYSTEMS AND TECHNIQUES, 2006, : 64 - +
  • [27] Evaluation of the operational SAR based Baltic Sea ice concentration products
    Karvonen, Juha
    [J]. ADVANCES IN SPACE RESEARCH, 2015, 56 (01) : 119 - 132
  • [28] A spaceborne SAR-based procedure to support the detection of landslides
    Esposito, Giuseppe
    Marchesini, Ivan
    Mondini, Alessandro Cesare
    Reichenbach, Paola
    Rossi, Mauro
    Sterlacchini, Simone
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2020, 20 (09) : 2379 - 2395
  • [29] REDUCING THE SUSCEPTIBILITY OF SAR-BASED OIL SPILL DETECTION TO LOW-WIND LOOK-ALIKES
    Ajadi, Olaniyi A.
    Meyer, Franz J.
    Tello, Marivi
    Ruello, Giuseppe
    [J]. OCEANS 2017 - ANCHORAGE, 2017,
  • [30] SAR interferometry over Baltic Sea ice
    Dammert, PBG
    Lepparanta, M
    Askne, J
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (16) : 3019 - 3037