ON THE GEOMETRIC STRUCTURE OF CURRENTS TANGENT TO SMOOTH DISTRIBUTIONS br

被引:0
|
作者
Alberti, Giovanni [1 ]
Massaccesi, Annalisa [2 ]
Stepanov, Eugene [3 ,4 ]
机构
[1] Univ Pisalargo, Dipartimento Matemat, Largo Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Padua, Dipartimento Tecn & Gest Sistemi Ind DTG, Stradella S Nicola 3, I-36100 Vicenza, Italy
[3] Russian Acad Sci, Steklov Inst Math, St Petersburg Branch, Fontanka 27, St Petersburg 191023, Russia
[4] Higher Sch Econ, Fac Math, Usacheva 6, Moscow 119048, Russia
基金
欧洲研究理事会; 俄罗斯基础研究基金会;
关键词
SIZE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that a k-dimensional smooth surface in a Eu-clidean space cannot be tangent to a non-involutive distribution of k-dimensional planes. In this paper we discuss the extension of this statement to weaker notions of surfaces, namely integral and normal currents. We find out that integral currents behave to this regard exactly as smooth surfaces, while the behavior of normal currents is rather multifaceted. This issue is strictly related to a geometric property of the boundary of currents, which is also discussed in details.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [1] Geometric representations of currents and distributions
    Harrison, J
    [J]. FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 193 - 204
  • [3] A new geometric structure on tangent bundles
    Georgiou, Nikos
    Guilfoyle, Brendan
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 172
  • [4] Geometric Anosov flows of dimension five with smooth distributions
    Fang, Y
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2005, 4 (03) : 333 - 362
  • [5] On the tangent cones to plurisubharmonic currents
    Dabbek, Khalifa
    Ghiloufi, Noureddine
    Hbil, Jawhar
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (05): : 562 - 574
  • [6] Differential and geometric structure for the tangent bundle of a projective limit manifold.
    Galanis, GN
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2004, 112 : 103 - 115
  • [7] Existence of tangent cones to plurisubharmonic currents
    Haggui, Fathi
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (03) : 299 - 308
  • [8] Geometric structure in smooth dual and local Langlands conjecture
    Aubert, Anne-Marie
    Baum, Paul
    Plymen, Roger
    Solleveld, Maarten
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2014, 9 (02): : 99 - 136
  • [9] Geometric structure in smooth dual and local Langlands conjecture
    Anne-Marie Aubert
    Paul Baum
    Roger Plymen
    Maarten Solleveld
    [J]. Japanese Journal of Mathematics, 2014, 9 : 99 - 136
  • [10] AFFINE GEOMETRIC SPACES IN TANGENT CATEGORIES
    Blute, R. F.
    Cruttwell, G. S. H.
    Lucyshyn-Wright, R. B. B.
    [J]. THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 405 - 437