Geometric structure in smooth dual and local Langlands conjecture

被引:10
|
作者
Aubert, Anne-Marie [1 ]
Baum, Paul [2 ]
Plymen, Roger [3 ,4 ]
Solleveld, Maarten [5 ]
机构
[1] UPMC, CNRS, UMR 7586, Inst Math Jussieu Paris Rive Gauche, F-75005 Paris, France
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[4] Univ Manchester, Sch Math, Manchester M13 9PL, England
[5] Radboud Univ Nijmegen, NL-6525 AJ Nijmegen, Netherlands
来源
JAPANESE JOURNAL OF MATHEMATICS | 2014年 / 9卷 / 02期
基金
美国国家科学基金会;
关键词
reductive p-adic group; local Langlands conjecture; Bernstein components; PERIODIC CYCLIC HOMOLOGY; IRREDUCIBLE REPRESENTATIONS; ADIC GROUPS; GL(N); PROOF;
D O I
10.1007/s11537-014-1267-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This expository paper first reviews some basic facts about p-adic fields, reductive p-adic groups, and the local Langlands conjecture. If G is a reductive p-adic group, then the smooth dual of G is the set of equivalence classes of smooth irreducible representations of G. The representations are on vector spaces over the complex numbers. In a canonical way, the smooth dual is the disjoint union of subsets known as the Bernstein components. According to a conjecture due to ABPS (Aubert-Baum-Plymen-Solleveld), each Bernstein component has a geometric structure given by an appropriate extended quotient. The paper states this ABPS conjecture and then indicates evidence for the conjecture, and its connection to the local Langlands conjecture.
引用
收藏
页码:99 / 136
页数:38
相关论文
共 50 条