Parallel algorithms for solving aggregated shortest-path problems

被引:0
|
作者
Romeijn, HE
Smith, RL [1 ]
机构
[1] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA
[2] Erasmus Univ, Rotterdam Sch Management, Rotterdam, Netherlands
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the problem of computing in parallel all pairs of shortest paths in a general large-scale directed network of N nodes. A hierarchical network decomposition algorithm is provided that yields for an important subclass of problems log N savings in computation time over the traditional parallel implementation of Dijkstra's algorithm. Error bounds are provided for the procedure and are illustrated numerically for a problem motivated by intelligent transportation systems.
引用
收藏
页码:941 / 953
页数:13
相关论文
共 50 条
  • [41] MICROCOMPUTER-BASED ALGORITHMS FOR LARGE-SCALE SHORTEST-PATH PROBLEMS
    KLINGMAN, DD
    SCHNEIDER, RF
    [J]. DISCRETE APPLIED MATHEMATICS, 1986, 13 (2-3) : 183 - 206
  • [42] REDUCING SPACE REQUIREMENTS FOR SHORTEST-PATH PROBLEMS
    MUNRO, JI
    RAMIREZ, RJ
    [J]. OPERATIONS RESEARCH, 1982, 30 (05) : 1009 - 1013
  • [43] BDD-Constrained A* Search: A Fast Method for Solving Constrained Shortest-Path Problems
    Takeuchi, Fumito
    Nishino, Masaaki
    Yasuda, Norihito
    Akiba, Takuya
    Minato, Shin-ichi
    Nagata, Masaaki
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (12): : 2945 - 2952
  • [44] PROBABILISTIC SHORTEST-PATH PROBLEMS WITH BUDGETARY CONSTRAINTS
    BARD, JF
    MILLER, JL
    [J]. COMPUTERS & OPERATIONS RESEARCH, 1989, 16 (02) : 145 - 159
  • [45] SHORTEST-PATH PROBLEMS AND MOLECULAR-CONFORMATION
    DRESS, AWM
    HAVEL, TF
    [J]. DISCRETE APPLIED MATHEMATICS, 1988, 19 (1-3) : 129 - 144
  • [46] Solving Partially Observable Stochastic Shortest-Path Games
    Tomasek, Petr
    Horak, Karel
    Aradhye, Aditya
    Bosansky, Branislav
    Chatterjee, Krishnendu
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4182 - 4189
  • [47] Parametric Shortest-Path Algorithms via Tropical Geometry
    Joswig, Michael
    Schroter, Benjamin
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (03) : 1 - 17
  • [48] Parallel Shortest Path Algorithms for Solving Large-Scale Instances
    Madduri, Kamesh
    Bader, David A.
    Berry, Jonathan W.
    Crobak, Joseph R.
    [J]. SHORTEST PATH PROBLEM, 2009, 74 : 249 - +
  • [49] AN OPTIMAL SHORTEST-PATH PARALLEL ALGORITHM FOR PERMUTATION GRAPHS
    IBARRA, OH
    ZHENG, Q
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1995, 24 (01) : 94 - 99
  • [50] NEW POLYNOMIAL SHORTEST-PATH ALGORITHMS AND THEIR COMPUTATIONAL ATTRIBUTES
    GLOVER, F
    KLINGMAN, DD
    PHILLIPS, NV
    SCHNEIDER, RF
    [J]. MANAGEMENT SCIENCE, 1985, 31 (09) : 1106 - 1128