Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes

被引:30
|
作者
Romero Victorica, Matias [1 ]
Soria, Marcelo A. [2 ]
Alberto Batista-Garcia, Ramon [3 ]
Ceja-Navarro, Javier A. [4 ]
Vikram, Surendra [5 ]
Ortiz, Maximiliano [5 ]
Ontanon, Ornella [1 ]
Ghio, Silvina [1 ]
Martinez-Avila, Liliana [3 ]
Quintero Garcia, Omar Jasiel [3 ]
Etcheverry, Clara [6 ]
Campos, Eleonora [1 ]
Cowan, Donald [5 ]
Arneodo, Joel [1 ]
Talia, Paola M. [1 ]
机构
[1] Consejo Nacl Invest Cient & Tecnol CONICET, Inst Agrobiotecnol & Biol Mol IABIMO, Inst Nacl Tecnol Agr INTA, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Agron, Catedra Microbiol Agricola, INBA CONICET, Buenos Aires, DF, Argentina
[3] Univ Autonoma Estado Morelos, Inst Invest Ciencias Basicas & Aplicadas, Ctr Invest Dinam Celular, Cuernavaca, Morelos, Mexico
[4] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA USA
[5] Univ Pretoria, Dept Biochem Genet & Microbiol, Ctr Microbial Ecol & Genom, Pretoria, South Africa
[6] Univ Nacl Nordeste, Biol Los Invertebrados, Fac Ciencias Exactas & Nat & Agrimensura, Corrientes, Argentina
关键词
GUT MICROBIOTA; GH10; XYLANASE; PHYLOGENETIC DIVERSITY; BIOCHEMICAL-CHARACTERIZATION; BIOCATALYTIC PROPERTIES; FUNCTIONAL-ANALYSIS; TREPONEMA-PRIMITIA; NITROGEN-FIXATION; LIGNOCELLULOSE; ENDO-BETA-1,4-XYLANASE;
D O I
10.1038/s41598-020-60850-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus. Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances. However, detected functional capacity varied, with C. fulviceps (a grass-wood-feeder) gut microbiome samples containing more genes related to amino acid metabolism, whereas N. aquilinus (a wood-feeder) gut microbiome samples were enriched in genes involved in carbohydrate metabolism and cellulose degradation. The C. fulviceps gut microbiome was enriched specifically in genes coding for debranching- and oligosaccharide-degrading enzymes. These findings suggest an association between the primary food source and the predicted categories of the enzymes present in the gut microbiomes of each species. To further investigate the termite microbiomes as sources of biotechnologically relevant glycosyl hydrolases, a putative GH10 endo-beta-1,4-xylanase, Xyl10E, was cloned and expressed in Escherichia coli. Functional analysis of the recombinant metagenome-derived enzyme showed high specificity towards beechwood xylan (288.1 IU/mg), with the optimum activity at 50 degrees C and a pH-activity range from 5 to 10. These characteristics suggest that Xy110E may be a promising candidate for further development in lignocellulose deconstruction applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The value of genome sequences in the rapid identification of novel genes encoding specific plant cell wall degrading enzymes
    de Vries, RP
    van Grieken, C
    vanKuyk, PA
    Wösten, HAB
    CURRENT GENOMICS, 2005, 6 (03) : 157 - 187
  • [22] EFFECT OF AUXIN ON CELL WALL DEGRADING ENZYMES
    TANIMOTO, E
    MASUDA, Y
    PHYSIOLOGIA PLANTARUM, 1968, 21 (04) : 820 - &
  • [23] AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production
    Viia Kõiv
    Liis Andresen
    Andres Mäe
    Molecular Genetics and Genomics, 2010, 283 : 541 - 549
  • [24] AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production
    Koiv, Viia
    Andresen, Liis
    Maee, Andres
    MOLECULAR GENETICS AND GENOMICS, 2010, 283 (06) : 541 - 549
  • [25] Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen
    Brunner, Patrick C.
    Torriani, Stefano F. F.
    Croll, Daniel
    Stukenbrock, Eva H.
    McDonald, Bruce A.
    MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (06) : 1337 - 1347
  • [26] Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels
    Jung, Sang-Kyu
    Parisutham, Vinuselvi
    Jeong, Seong Hun
    Lee, Sung Kuk
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2012,
  • [27] Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi
    Brian C King
    Katrina D Waxman
    Nicholas V Nenni
    Larry P Walker
    Gary C Bergstrom
    Donna M Gibson
    Biotechnology for Biofuels, 4
  • [28] Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi
    King, Brian C.
    Waxman, Katrina D.
    Nenni, Nicholas V.
    Walker, Larry P.
    Bergstrom, Gary C.
    Gibson, Donna M.
    BIOTECHNOLOGY FOR BIOFUELS, 2011, 4
  • [29] Characterization of cell wall degrading enzymes of Thanatephorus cucumeris
    Jayasinghe, CK
    Wijayaratne, SCP
    Fernando, THPS
    MYCOPATHOLOGIA, 2004, 157 (01) : 73 - 79
  • [30] Identification and expression profiling of novel plant cell wall degrading enzymes from a destructive pest of palm trees, Rhynchophorus ferrugineus
    Antony, B.
    Johny, J.
    Aldosari, S. A.
    Abdelazim, M. M.
    INSECT MOLECULAR BIOLOGY, 2017, 26 (04) : 469 - 484