Sequence Embedding for Zero or Low Resource Knowledge Graph Completion

被引:0
|
作者
Du, Zhijuan [1 ,2 ]
机构
[1] Inner Mongolia Univ, Hohhot 010021, Peoples R China
[2] Inner Mongolia Discipline Inspect & Supervis Big, Hohhot 010015, Peoples R China
关键词
Knowledge graph; Zero/low resource; Structure sequence; Multi head attention; Non-parameter; Adversarial learning;
D O I
10.1007/978-3-030-73194-6_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph completion (KGC) has been proposed to improve KGs by filling in missing links. Previous KGC approaches require a large number of training instances (entity and relation) and hold a closed-world assumption. The real case is that very few instances are available and KG evolve quickly with new entities and relations being added by the minute. The newly added cases are zero resource in training. In this work, we propose a Sequence Embedding with Adversarial learning approach (SEwA) for zero or low resource KGC. It transform the KGC into a sequence prediction problem by making full use of inherently link structure of knowledge graph and resource-easy-to-transfer feature of adversarial contextual embedding. Specifically, the triples ( <h, r, t>) and higher-order triples ( <h, p, t>) containing the paths (p = r(1) -> ... -> r(n) ) are represented as word sequences and are encoded by pre-training model with multi head self-attention. The path is obtained by a non-parametric learning based on the one-class classification of the relation trees. The zero and low resources issues are further optimizes by adversarial learning. At last, our SEwA is evaluated by low resource datasets and open world datasets.
引用
收藏
页码:290 / 306
页数:17
相关论文
共 50 条
  • [41] Federated knowledge graph completion via embedding-contrastive learning
    Chen, Mingyang
    Zhang, Wen
    Yuan, Zonggang
    Jia, Yantao
    Chen, Huajun
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [42] Temporal Knowledge Graph Completion Based on Time Series Gaussian Embedding
    Xu, Chenjin
    Nayyeri, Mojtaba
    Alkhoury, Fouad
    Yazdi, Hamed
    Lehmann, Jens
    SEMANTIC WEB - ISWC 2020, PT I, 2020, 12506 : 654 - 671
  • [43] Knowledge graph embedding and completion based on entity community and local importance
    Yang, Xu-Hua
    Ma, Gang-Feng
    Jin, Xin
    Long, Hai-Xia
    Xiao, Jie
    Ye, Lei
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22132 - 22142
  • [44] Spatiotemporal knowledge graph completion via diachronic and transregional word embedding
    Xu, Xiaobei
    Jia, Wei
    Yan, Li
    Lu, Xiaoping
    Wang, Chao
    Ma, Zongmin
    INFORMATION SCIENCES, 2024, 667
  • [45] Cluster Robust Inference for Embedding-Based Knowledge Graph Completion
    Schramm, Simon
    Niklas, Ulrich
    Schmid, Ute
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 284 - 299
  • [46] A contrastive knowledge graph embedding model with hierarchical attention and dynamic completion
    Bin Shang
    Yinliang Zhao
    Jun Liu
    Yifan Liu
    Chenxin Wang
    Neural Computing and Applications, 2023, 35 : 15005 - 15018
  • [47] A semantic guide-based embedding method for knowledge graph completion
    Zhang, Jinglin
    Shen, Bo
    Wang, Tao
    Zhong, Yu
    EXPERT SYSTEMS, 2024, 41 (08)
  • [48] A unified embedding-based relation completion framework for knowledge graph
    Zhong, Hao
    Li, Weisheng
    Zhang, Qi
    Lin, Ronghua
    Tang, Yong
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [49] Zero-Shot Embedding for Unseen Entities in Knowledge Graph
    Zhao, Yu
    Gao, Sheng
    Gallinari, Patrick
    Guo, Jun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (07): : 1440 - 1447
  • [50] Expanding Semantic Knowledge for Zero-Shot Graph Embedding
    Wang, Zheng
    Shao, Ruihang
    Wang, Changping
    Hu, Changjun
    Wang, Chaokun
    Gong, Zhiguo
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT I, 2021, 12681 : 394 - 402