A piezoelectric energy harvesting from the vibration of the airflow around a moving vehicle

被引:5
|
作者
Akkaya Oy, Sibel [1 ]
机构
[1] Ordu Univ, Fatsa Fac Marine Sci, TR-52400 Ordu, Turkey
关键词
airflow speed; energy harvesting; piezoelectric; transducer angle; vehicle; DESIGN; INSTALLATION; GENERATOR; CIRCUIT; DEVICES;
D O I
10.1002/2050-7038.12655
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, an energy harvester using the mechanical vibrations created by the airflow on piezoelectric transducers outside a vehicle was designed, produced and introduced. The introduced harvester has an energy production potential of mu J level. Given an energy power, very little power but long-term harvest was achieved. While the introduced vehicle was driven at speeds of 70, 90, and 110 km/h, energy production at location angles of 0 degrees, 45 degrees, and 90 degrees was determined for each speed. Vehicle speed, location angle, airflow outside the vehicle, and harvester output were measured. Output voltage of the harvester was found to be directly proportional to vehicle speed. Output of the transducers was combined using a circuit topology that would maximize the output voltage. Thanks to this circuit highest output voltage was obtained from the location angle of 0 degrees. Thus, maximum output power was obtained at a speed of 110 km/h for 0 degrees location angle. This research develops a new design method for efficient and practical energy generated by piezoelectric sensors placed on a vehicle from the vibration of the airflow around a moving vehicle. This energy harvester can meet the internal micro energy needs of the vehicle with an external battery.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Tapered Piezoelectric Devices for Vibration Energy Harvesting
    Siddiqui, Naved A.
    Roberts, Matthew I.
    Kim, Dong-Joo
    Overfelt, Ruel A.
    Prorok, Barton C.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2014, 2014, 9057
  • [22] Flipping Rectifiers for Piezoelectric Vibration Energy Harvesting
    Wu, Wan-Ling
    Yang, Ching-Yuan
    Wang, Dung-An
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 198 - 199
  • [23] Vibration Based Piezoelectric Energy Harvesting - A Review
    Pradeesh, E. L.
    Udhayakumar, S.
    Vasundhara, M. G.
    Vivek, V. Vadivel
    INTERNATIONAL CONFERENCE ON MECHATRONICS IN ENERGY AND ENVIRONMENT PROTECTION (ICMEEP 2020), 2020, 995
  • [24] Vibration energy harvesting using piezoelectric materials
    Cellular Massone, Ana Carolina
    Reis, Sabrina de Oliveira
    Viola, Flavio Maggessi
    CONHECIMENTO & DIVERSIDADE, 2019, 11 (25): : 63 - 80
  • [25] Efficiency of piezoelectric mechanical vibration energy harvesting
    Kim, Miso
    Dugundji, John
    Wardle, Brian L.
    SMART MATERIALS AND STRUCTURES, 2015, 24 (05)
  • [26] Piezoelectric Energy Harvesting with an Ultrasonic Vibration Source
    Li, Tao
    Lee, Pooi See
    ACTUATORS, 2019, 8 (01)
  • [27] A Review of Piezoelectric Vibration Generator for Energy Harvesting
    Zhen, Yan
    Qing, He
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE, PTS 1-4, 2011, 44-47 : 2945 - 2949
  • [28] Piezoelectric Energy Harvesting from the Thorax Vibration of Freely Flying Bees
    Ma, Zhiyun
    Zhao, Jieliang
    Yu, Li
    Liang, Lulu
    Liu, Zhong
    Gu, Yongxia
    Wu, Jianing
    Wang, Wenzhong
    Yan, Shaoze
    CYBORG AND BIONIC SYSTEMS, 2025, 6
  • [29] Optimal piezoelectric energy harvesting from wind-induced vibration
    Zhang, Jiantao
    Shu, Chang
    Fang, Zhou
    FERROELECTRICS, 2017, 506 (01) : 10 - 23
  • [30] Piezoelectric energy harvesting from torsional vibration in internal combustion engines
    Kim, G. W.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2015, 16 (04) : 645 - 651