On compactness of maximal operators

被引:0
|
作者
Berezhnoi, E. I. [1 ]
机构
[1] Yaroslavl State Univ, Yaroslavl, Russia
基金
俄罗斯基础研究基金会;
关键词
maximal operator; ideal Banach space; rearrangement invariant space; compactness of an operator; differential basis;
D O I
10.1134/S0037446615040035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a new approach, we show that, for any ideal space X with nonempty regular part, the maximal function operator M (B) constructed from an arbitrary quasidensity differential basis B is not compact if considered in a pair of weighted spaces (X (w) , X (v) ) generated by X. For special differential bases that include convex quasidensity bases, we prove that M (B) is not compact in a pair of weighted spaces (X (w) , X (v) ) generated by an arbitrary ideal space X. An example is given of a quasidensity differential basis such that the maximal function operator constructed from this basis is compact in (L-infinity, L-infinity).
引用
收藏
页码:593 / 600
页数:8
相关论文
共 50 条
  • [41] On the Compactness of Commutators of Hardy–Littlewood Maximal Operator
    D.-H. Wang
    J. Zhou
    Z.-D. Teng
    Analysis Mathematica, 2019, 45 : 599 - 619
  • [42] COMPACTNESS PROPERTIES OF ABSTRACT KERNEL OPERATORS
    ALIPRANTIS, CD
    BURKINSHAW, O
    DUHOUX, M
    PACIFIC JOURNAL OF MATHEMATICS, 1982, 100 (01) : 1 - 22
  • [43] COMPACTNESS OF INTEGRAL OPERATORS ON BANACH LATTICES
    NAGEL, RJ
    SCHLOTTE.U
    MATHEMATISCHE ANNALEN, 1973, 202 (04) : 301 - 306
  • [44] Analyticity and compactness of semigroups of composition operators
    Avicou, C.
    Chalendar, I.
    Partington, J. R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) : 545 - 560
  • [45] COMPACTNESS OF LAMBDA-NUCLEAR OPERATORS
    WALKER, GR
    MICHIGAN MATHEMATICAL JOURNAL, 1976, 23 (02) : 167 - 172
  • [46] COMPACTNESS OF CERTAIN INTEGRAL-OPERATORS
    GRAHAM, IG
    SLOAN, IH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (02) : 580 - 594
  • [47] COMPACTNESS CRITERIA FOR FRACTIONAL INTEGRAL OPERATORS
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (05) : 1269 - 1283
  • [48] EXTRAPOLATION OF COMPACTNESS FOR CERTAIN PSEUDODIFFERENTIAL OPERATORS
    Carro, Maria J.
    Soria, Javier
    Torres, Rodolfo H.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 66 (01): : 177 - 186
  • [49] COMPACTNESS PROPERTIES OF MULTIPLICATION AND SUBSTITUTION OPERATORS
    Angeloni, Laura
    Appell, Jue
    Benavides, Tomas Dominguez
    Reinwand, Simon
    Vinti, Gianluca
    JOURNAL OF OPERATOR THEORY, 2023, 89 (01) : 49 - 74
  • [50] On the compactness of the product of Hankel operators on the sphere
    Xia, Jingbo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (04) : 1375 - 1384