A Fast Optimal Power Flow Algorithm Using Powerball Method

被引:16
|
作者
Zhang, Hai-Tao [1 ,2 ]
Sun, Weigao [1 ,2 ]
Li, Yuanzheng [1 ,2 ]
Fu, Dongfei [1 ,2 ]
Yuan, Ye [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimization; Convergence; Acceleration; Voltage control; Generators; Power transmission lines; Convergence speed; interior point method; Newton-Raphson (NR) method; optimal power flow (OPF); optimization methods; LINE-SEARCH; ENERGY; SYSTEMS; DISPATCH; EVOLUTIONARY; OPERATION; CONSENSUS; NETWORKS;
D O I
10.1109/TII.2019.2909328
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The complexity and randomness of the power system with distributed energy resources have led to the difficulties for fast optimal power flow (OPF) analysis. As a remedy, in this paper, we develop an interior point Powerball algorithm to accelerate the OPF solution process. To achieve better convergence characteristics, the proposed IPPB algorithm which is based on the Powerball optimization method, improves the search directions during iterative optimization by a nonlinear transformation. Also, a Newton-Raphson Powerball algorithm is derived for a faster power flow calculation, which is a basic yet critical part of the OPF problem. Numerical case studies are conducted on benchmark power systems with different scales to validate the proposed algorithms. Performances of the proposed algorithms to address improper initial points are studied by randomly picking the initial bus voltages. Numerical study results verify the feasibility and superiority of the proposed algorithms.
引用
收藏
页码:6993 / 7003
页数:11
相关论文
共 50 条
  • [21] An efficient optimal power flow using bisection method
    S. Surender Reddy
    P. R. Bijwe
    [J]. Electrical Engineering, 2018, 100 : 2217 - 2229
  • [22] Optimal power flow method using evolutionary programming
    Wong, KP
    Yuryevich, J
    [J]. SIMULATED EVOLUTION AND LEARNING, 1999, 1585 : 405 - 412
  • [23] Optimal power flow using the AMTPG-Jaya algorithm
    Warid, Warid
    [J]. APPLIED SOFT COMPUTING, 2020, 91
  • [24] Optimal power flow using genetic algorithm based on similarity
    [J]. Guvenc, U. (ugurguvenc@duzce.edu.tr), 2012, Sila Science, University Mah Mekan Sok, No 24, Trabzon, Turkey (29):
  • [25] Multiobjective optimal power flow using hybrid evolutionary Algorithm
    Alawode Kehinde, O.
    Jubril Abimbola, M.
    Komolafe Olusola, A.
    [J]. World Academy of Science, Engineering and Technology, 2009, 39 : 790 - 795
  • [26] Optimal Power Flow Solution Using Water Cycle Algorithm
    Barzegar, Alireza
    Sadollah, Ali
    Rajabpour, Leila
    Su, Rong
    [J]. 2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [27] Multiarea Optimal Power Flow using Multiobjective Evolutionary algorithm
    Amorim, E. A.
    Lima, F. G. M.
    Romero, R.
    Mantovani, J. R. S.
    [J]. 2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 4543 - 4550
  • [28] Distributed optimal power flow using bacterial swarming algorithm
    Wu, Q. H.
    Ji, T. Y.
    Li, M. S.
    Lu, Z.
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2010, 9 (04) : 409 - 416
  • [29] Optimal power flow using a genetic algorithm and linear algebra
    Maust, RS
    Klein, RL
    [J]. PROCEEDINGS OF THE AMERICAN POWER CONFERENCE, VOL 62, 2000, : 207 - 212
  • [30] Optimal Power Flow with Emission Controlled using Firefly Algorithm
    Herbadji, Ouafa
    Nadhir, Ketfi
    Slimani, Linda
    Bouktir, Tarek
    [J]. 2013 5TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND APPLIED OPTIMIZATION (ICMSAO), 2013,