CHARACTERIZATION OF ELECTRON BEAM WELDED 17-4 PH STAINLESS STEEL

被引:0
|
作者
Wanjara, P. [1 ]
Jahazi, M. [1 ]
机构
[1] Natl Res Council Canada, Inst Aerosp Res, Aerosp Mfg Technol Ctr, Montreal, PQ, Canada
关键词
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The Canadian Department of National Defence (DND) currently has a requirement for a fully automated captive trajectory system (CTS) with six degrees of freedom, all of which are to be motorized, to study the movement of stores (such as missiles) during carriage/release testing of F-18 and other military aircraft in the National Research Council (NRC) trisonic blowdown wind tunnel. In the CTS, one of the joints providing linear motion is designed and fabricated with a linkage (telescoping inner strut (TIS)) in two halves, split along its neutral plane, to allow machining of the internal geometry. To support the dynamic, kinematic and aerodynamic loads induced, the two halves must be welded together while maintaining high tolerances on the inner geometry. The designed weld areas on the neutral plane require a penetration of 17.1 mm from each face in 17-4 precipitation hardening (PH) martensitic stainless steel (SS). Using conventional joining techniques, such as tungsten inert gas TIG welding, the fabrication of a thick section requires a V groove joint design and multiple passes to achieve the required penetration. However, exposure to a substantial heat input through this process renders large weld and heat affected zones on either face of the strut as well as distortion of the component, which poses considerable difficulties for assembly and motion. The application of a high energy density technique, namely electron beam (EB) welding, was utilized to penetrate the thick section with a single pass, while minimizing the weld region, heat affected zone (HAZ) and distortion of the strut (low heat input).
引用
收藏
页码:413 / 435
页数:23
相关论文
共 50 条
  • [31] Corrosion behavior of 17-4 PH stainless steel in simulated marine environment
    Wu, Ming
    Zhao, Zhihao
    Wang, Xu
    Wang, Chenchong
    Liang, Ping
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2019, 70 (03): : 461 - 469
  • [32] Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel
    Enwei Qin
    Guoxing Chen
    Ziming Tan
    Shuhui Wu
    Journal of Materials Engineering and Performance, 2015, 24 : 4578 - 4583
  • [33] Tensile and fatigue properties of 17-4 PH stainless steel at high temperatures
    Wu, JH
    Lin, CK
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (06): : 1715 - 1724
  • [34] Corrosion fatigue behavior of 17-4 PH stainless steel in different tempers
    Lin, CK
    Lin, CP
    FATIGUE AND FRACTURE MECHANICS: 33RD VOLUME, 2003, 1417 : 598 - 613
  • [35] A study of tensile behavior of SLM processed 17-4 PH stainless steel
    Ponnusamy, P.
    Sharma, Basant
    Masood, S. H.
    Rashid, R. A. Rahman
    Rashid, Riyan
    Palanisamy, S.
    Ruan, D.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 4531 - 4534
  • [36] Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel
    Qin, Enwei
    Chen, Guoxing
    Tan, Ziming
    Wu, Shuhui
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (11) : 4578 - 4583
  • [38] Tensile and fatigue properties of 17-4 PH stainless steel at high temperatures
    Jui-Hung Wu
    Chih-Kuang Lin
    Metallurgical and Materials Transactions A, 2002, 33 : 1715 - 1724
  • [39] Evaluation of Metal Injection Molded 17-4 PH Stainless Steel for Instruments
    Craft, A.
    Campbell, D.
    Aboud, B.
    MEDICAL DEVICE MATERIALS VI, 2013, : 41 - 46
  • [40] The Effects of LENS Process Parameters on the Behaviour of 17-4 PH Stainless Steel
    Mathoho, I
    Akinlabi, E. T.
    Arthur, N.
    Tlotleng, M.
    Makoana, N. W.
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 481 - 490