Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE)

被引:46
|
作者
Kerzenmacher, T. [1 ]
Wolff, M. A. [1 ]
Strong, K. [1 ]
Dupuy, E. [2 ]
Walker, K. A. [1 ,2 ]
Amekudzi, L. K. [3 ]
Batchelor, R. L. [1 ]
Bernath, P. F. [4 ,5 ]
Berthet, G.
Blumenstock, T. [6 ,7 ]
Boone, C. D. [2 ]
Bramstedt, K. [3 ]
Brogniez, C. [8 ]
Brohede, S. [9 ]
Burrows, J. P. [3 ]
Catoire, V. [5 ]
Dodion, J. [10 ]
Drummond, J. R. [1 ,11 ]
Dufour, D. G. [12 ]
Funke, B. [13 ]
Fussen, D. [10 ]
Goutail, F. [14 ]
Griffith, D. W. T. [15 ]
Haley, C. S. [16 ]
Hendrick, F. [10 ]
Hoepfner, M. [6 ,7 ]
Huret, N. [5 ]
Jones, N. [15 ]
Kar, J. [1 ]
Kramer, I. [6 ,7 ]
Llewellyn, E. J. [17 ]
Lopez-Puertas, M. [13 ]
Manney, G. [18 ,19 ]
McElroy, C. T. [1 ,20 ]
McLinden, C. A. [20 ]
Melo, S. [21 ]
Mikuteit, S. [6 ,7 ]
Murtagh, D. [9 ]
Nichitiu, F. [1 ]
Notholt, J. [3 ]
Nowlan, C. [1 ]
Piccolo, C. [22 ]
Pommereau, J. -P. [14 ]
Randall, C. [23 ,24 ]
Raspollini, P. [25 ]
Ridolfi, M. [26 ]
Richter, A. [3 ]
Schneider, M. [6 ,7 ]
Schrems, O. [27 ]
Silicani, M. [21 ]
机构
[1] Univ Toronto, Dept Phys, Toronto, ON, Canada
[2] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[3] Univ Bremen, Inst Environm Phys, Inst Remote Sensing, Bremen, Germany
[4] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England
[5] Univ Orleans, CNRS, Lab Phys & Chim Environm, Orleans, France
[6] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
[7] Univ Karlsruhe, IMK, Karlsruhe, Germany
[8] Univ Sci & Tech Lille Flandres Artois, Opt Atmospher Lab, Villeneuve Dascq, France
[9] Chalmers Univ Technol, Dept Radio & Space Sci, S-41296 Gothenburg, Sweden
[10] Inst Aeron Spatiale Belgique, BIRA, B-1180 Brussels, Belgium
[11] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada
[12] Picomole Instruments Inc, Edmonton, AB, Canada
[13] CSIC, Inst Astrofis Andalucia, Granada, Spain
[14] CNRS, Serv Aeron, F-91371 Verrieres Le Buisson, France
[15] Univ Wollongong, Sch Chem, Wollongong, NSW, Australia
[16] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 2R7, Canada
[17] Univ Saskatchewan, Inst Space & Atmospher Studies, Saskatoon, SK S7N 0W0, Canada
[18] CALTECH, Jet Prop Lab, Pasadena, CA USA
[19] New Mexico Inst Min & Technol, Socorro, NM 87801 USA
[20] Environm Canada, Downsview, ON, Canada
[21] Canadian Space Agcy, St Hubert, PQ, Canada
[22] Univ Oxford, Oxford, England
[23] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA
[24] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[25] CNR, Ist Fis Applicata Nello Carrara IFAC, Florence, Italy
[26] Univ Bologna, Dipartimento Chim Fis & Inorgan, I-40136 Bologna, Italy
[27] Alfred Wegener Inst Polar & Marine Res, D-2850 Bremerhaven, Germany
[28] NASA, Langley Res Ctr, Hampton, VA 23665 USA
关键词
D O I
10.5194/acp-8-5801-2008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE), using an infrared Fourier Transform Spectrometer (ACE-FTS) and (for NO2) an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation). In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY), stellar occultation measurements (GOMOS), limb measurements (MIPAS, OSIRIS), nadir measurements (SCIAMACHY), balloon-borne measurements (SPIRALE, SAOZ) and ground-based measurements (UV-VIS, FTIR). Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR) profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS) and SAGE II (for ACE-FTS (sunrise) and MAESTRO) and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average) agree to +/- 8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.
引用
收藏
页码:5801 / 5841
页数:41
相关论文
共 50 条
  • [31] Trend of lower stratospheric methane (CH4) from atmospheric chemistry experiment (ACE) and atmospheric trace molecule spectroscopy (ATMOS) measurements
    Rinsland, Curtis P.
    Chiou, Linda
    Boone, Chris
    Bernath, Peter
    Mahieu, Emmanuel
    Zander, Rodolphe
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (13): : 1066 - 1071
  • [32] First measurements of the HCFC-142b trend from atmospheric chemistry experiment (ACE) solar occultation spectra
    Rinsland, Curtis P.
    Chiou, Linda
    Boone, Chris
    Bernath, Peter
    Mahieu, Emmanuel
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (18): : 2127 - 2134
  • [33] Validation of Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) chlorodifluoromethane (HCFC-22) in the upper troposphere and lower stratosphere
    Kolonjari, Felicia
    Sheese, Patrick E.
    Walker, Kaley A.
    Boone, Chris D.
    Plummer, David A.
    Engel, Andreas
    Montzka, Stephen A.
    Oram, David E.
    Schuck, Tanja
    Stiller, Gabriele P.
    Toon, Geoffrey C.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2024, 17 (08) : 2429 - 2449
  • [34] The instrumental line shape of the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS)
    Boone, C. D.
    Bernath, P. F.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2019, 230 : 1 - 12
  • [35] Atmospheric chemistry of thiourea: nucleation with urea and roles in NO2 hydrolysis
    Ni, Shuang
    Bai, Feng-Yang
    Pan, Xiu-Mei
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (15) : 8109 - 8117
  • [36] EXPERIMENT AND THEORY IN ATMOSPHERIC CHEMISTRY
    GOLDEN, DM
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1983, 186 (AUG): : 186 - ENVR
  • [38] First global observations of atmospheric COClF from the Atmospheric Chemistry Experiment mission
    Fu, Dejian
    Boone, Chris D.
    Bernath, Peter F.
    Weisenstein, Debra K.
    Rinsland, Curtis P.
    Manney, Gloria L.
    Walker, Kaley A.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (12): : 974 - 985
  • [39] Atmospheric chemistry of 2-ethyl hexanal: Photochemistry and oxidation in the presence of NO2
    Fraire, Juan C.
    Argueello, Gustavo A.
    Malanca, Fabio E.
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2011, 223 (2-3) : 165 - 171
  • [40] Reprint of: The instrumental line shape of the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS)
    Boone, C. D.
    Bernath, P. F.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2019, 238