THRESHOLD VALUE OF THE PENALTY PARAMETER IN THE MINIMIZATION OF L1-PENALIZED CONDITIONAL VALUE-AT-RISK

被引:1
|
作者
Gaitsgory, Vladimir [1 ]
Tarnopolskaya, Tanya [2 ]
机构
[1] Univ S Australia, Ctr Ind & Appl Math, Mawson Lakes, SA 5095, Australia
[2] CSIRO Math Informat & Stat, N Ryde, NSW, Australia
关键词
Conditional value-at-risk (CVaR); L-1-penalization; threshold value of the penalty parameter; linear programming; CVAR; PORTFOLIO;
D O I
10.3934/jimo.2013.9.191
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A problem of minimization of L1-penalized conditional value-at-risk (CVaR) is considered. It is shown that there exists a non-negative threshold value of the penalty parameter such that the optimal value of the penalized problem is unbounded if the penalty parameter is less than the threshold value, and it is bounded if the penalty parameter is greater or equal than this value. It is established that the threshold value can be found via the solution of a linear programming problem, and, therefore, readily computable. Theoretical results are illustrated by numerical examples.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 50 条
  • [41] Credit risk optimization with Conditional Value-at-Risk criterion
    Fredrik Andersson
    Helmut Mausser
    Dan Rosen
    Stanislav Uryasev
    [J]. Mathematical Programming, 2001, 89 : 273 - 291
  • [42] Computational aspects of minimizing conditional value-at-risk
    Kunzi-Bay, Alexandra
    Mayer, Janos
    [J]. COMPUTATIONAL MANAGEMENT SCIENCE, 2006, 3 (01) : 3 - 27
  • [43] Conditional Value-at-Risk under ellipsoidal uncertainties
    Wong, M. H.
    [J]. COMPUTATIONAL FINANCE AND ITS APPLICATIONS III, 2008, : 217 - 226
  • [44] Asymptotic behavior of the empirical conditional value-at-risk
    Gao, Fuqing
    Wang, Shaochen
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2011, 49 (03): : 345 - 352
  • [45] Credit risk optimization with Conditional Value-at-Risk criterion
    Andersson, F
    Mausser, H
    Rosen, D
    Uryasev, S
    [J]. MATHEMATICAL PROGRAMMING, 2001, 89 (02) : 273 - 291
  • [46] Optimization with Multivariate Conditional Value-at-Risk Constraints
    Noyan, Nilay
    Rudolf, Gabor
    [J]. OPERATIONS RESEARCH, 2013, 61 (04) : 990 - 1013
  • [47] Portfolio Optimization Model Of Conditional Value-at-Risk
    He, Linjie
    Liang, Lin
    Ma, Chaoqun
    Zhang, Xiaoyong
    [J]. ADVANCES IN BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, 2008, 5 : 957 - +
  • [48] Deviation inequalities for an estimator of the conditional value-at-risk
    Wang, Ying
    Gao, Fuqing
    [J]. OPERATIONS RESEARCH LETTERS, 2010, 38 (03) : 236 - 239
  • [49] Conditional value-at-risk beyond finance: a survey
    Filippi, C.
    Guastaroba, G.
    Speranza, M. G.
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2020, 27 (03) : 1277 - 1319
  • [50] Optimizing the conditional value-at-risk in revenue management
    Jochen Gönsch
    Michael Hassler
    [J]. Review of Managerial Science, 2014, 8 : 495 - 521