THRESHOLD VALUE OF THE PENALTY PARAMETER IN THE MINIMIZATION OF L1-PENALIZED CONDITIONAL VALUE-AT-RISK

被引:1
|
作者
Gaitsgory, Vladimir [1 ]
Tarnopolskaya, Tanya [2 ]
机构
[1] Univ S Australia, Ctr Ind & Appl Math, Mawson Lakes, SA 5095, Australia
[2] CSIRO Math Informat & Stat, N Ryde, NSW, Australia
关键词
Conditional value-at-risk (CVaR); L-1-penalization; threshold value of the penalty parameter; linear programming; CVAR; PORTFOLIO;
D O I
10.3934/jimo.2013.9.191
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A problem of minimization of L1-penalized conditional value-at-risk (CVaR) is considered. It is shown that there exists a non-negative threshold value of the penalty parameter such that the optimal value of the penalized problem is unbounded if the penalty parameter is less than the threshold value, and it is bounded if the penalty parameter is greater or equal than this value. It is established that the threshold value can be found via the solution of a linear programming problem, and, therefore, readily computable. Theoretical results are illustrated by numerical examples.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 50 条
  • [1] Newsvendor solutions via conditional value-at-risk minimization
    Gotoh, Jun-ya
    Takano, Yuichi
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (01) : 80 - 96
  • [2] Distributionally robust reinsurance with Value-at-Risk and Conditional Value-at-Risk
    Liu, Haiyan
    Mao, Tiantian
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2022, 107 : 393 - 417
  • [3] On the performance of algorithms for the minimization of l1-penalized functionals
    Loris, Ignace
    [J]. INVERSE PROBLEMS, 2009, 25 (03)
  • [4] Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics
    Chun, So Yeon
    Shapiro, Alexander
    Uryasev, Stan
    [J]. OPERATIONS RESEARCH, 2012, 60 (04) : 739 - 756
  • [5] On the global minimization of the value-at-risk
    Pang, JS
    Leyffer, S
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (05): : 611 - 631
  • [6] Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review
    Hong, L. Jeff
    Hu, Zhaolin
    Liu, Guangwu
    [J]. ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2014, 24 (04):
  • [7] A SEQUENTIAL ELIMINATION APPROACH TO VALUE-AT-RISK AND CONDITIONAL VALUE-AT-RISK SELECTION
    Hepworth, Adam J.
    Atkinson, Michael P.
    Szechtman, Roberto
    [J]. 2017 WINTER SIMULATION CONFERENCE (WSC), 2017, : 2324 - 2335
  • [8] Analytical method for computing stressed value-at-risk with conditional value-at-risk
    Hong, KiHoon
    [J]. JOURNAL OF RISK, 2017, 19 (03): : 85 - 106
  • [9] A GENERAL FRAMEWORK OF IMPORTANCE SAMPLING FOR VALUE-AT-RISK AND CONDITIONAL VALUE-AT-RISK
    Sun, Lihua
    Hong, L. Jeff
    [J]. PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4, 2009, : 415 - 422
  • [10] MONTE CARLO ESTIMATION OF VALUE-AT-RISK, CONDITIONAL VALUE-AT-RISK AND THEIR SENSITIVITIES
    Hong, L. Jeff
    Liu, Guangwu
    [J]. PROCEEDINGS OF THE 2011 WINTER SIMULATION CONFERENCE (WSC), 2011, : 95 - 107