A Sharp Inequality for a Trigonometric Sum

被引:0
|
作者
Alzer, Horst [1 ]
Koumandos, Stamatis [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
Inequalities; sine sums; cosine sums; 2; VARIABLES; POLYNOMIALS; SERIES; FOURIER;
D O I
10.1007/s00009-012-0188-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the inequality -1/2 <= Sigma(n)(k=1) (COS(2kx)/2k - 1) + sin((2k - 1)x)/2k) holds for all natural numbers n and real numbers x with x epsilon [0, pi]. The sign of equality is valid if and only if n = 1 and x = pi/2.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 50 条
  • [21] On a trigonometric sum of Vinogradov
    Alzer, H
    Koumandos, S
    JOURNAL OF NUMBER THEORY, 2004, 105 (02) : 251 - 261
  • [22] On a monotonic trigonometric sum
    Brown, G
    Koumandos, S
    MONATSHEFTE FUR MATHEMATIK, 1997, 123 (02): : 109 - 119
  • [23] A POSITIVE TRIGONOMETRIC SUM
    BUSTOZ, J
    ISMAIL, MEH
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (01) : 176 - 181
  • [24] MONOTONIC TRIGONOMETRIC SUM
    ASKEY, R
    STEINIG, J
    AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (02) : 357 - 365
  • [25] On the Gauss trigonometric sum
    Garaev, MZ
    MATHEMATICAL NOTES, 2000, 68 (1-2) : 154 - 158
  • [26] On a monotonic trigonometric sum
    Gavin Brown
    Stamatis Koumandos
    Monatshefte für Mathematik, 1997, 123 : 109 - 119
  • [27] ON A POSITIVE TRIGONOMETRIC SUM
    ASKEY, R
    FITCH, J
    GASPER, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (06) : 1507 - &
  • [28] Sharp Inequalities for Trigonometric Functions
    Yang, Zhen-Hang
    Jiang, Yun-Liang
    Song, Ying-Qing
    Chu, Yu-Ming
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [29] Sharp inequalities for trigonometric sums
    Alzer, H
    Koumandos, S
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 : 139 - 152
  • [30] Another Trigonometric Inequality
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    FIBONACCI QUARTERLY, 2020, 58 (04): : 372 - 372