Perron-Frobenius operators and representations of the Cuntz-Krieger algebras for infinite matrices

被引:11
|
作者
Goncalves, Daniel [1 ]
Royer, Danilo [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
关键词
Cuntz-Krieger algebras for infinite matrices; Perron-Frobenius operators;
D O I
10.1016/j.jmaa.2008.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we extend the work of Kawamura, see [K. Kawamura, The Perron-Frobenius operators, invariant measures anti representations of the Cuntz-Krieger algebras, J. Math. Phys. 46 (2005)], for Cuntz-Krieger algebras O-A for infinite matrices A. We generalize the definition of branching systems, prove their existence for any given matrix A and show how they induce some very concrete representations of O-A. We use these representations to describe the Perron-Frobenius operator, associated to a nonsingular transformation, as an infinite sum and under some hypothesis we find a matrix representation for the operator. We finish the paper with a few examples. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:811 / 818
页数:8
相关论文
共 50 条