Common fixed point theorems for set-valued mappings in normed spaces

被引:6
|
作者
Balaj, Mircea [1 ]
Khamsi, Mohamed A. [2 ,3 ]
机构
[1] Univ Oradea, Dept Math, Oradea 410087, Romania
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[3] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
Common fixed point; Hyperconvex metric space; Multivalued mapping; Quasi-equilbrium problem; Quasi-optimization problem;
D O I
10.1007/s13398-018-0588-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Phi be the class of all real functions phi : [0, infinity[x[0, infinity[-> [0, infinity[ that satisfy the following condition: there exists alpha is an element of]0, 1[ such that phi((1-alpha)r, alpha r) < r, for all r > 0. In this paper, we show that if X is a nonempty compact convex subset of a real normed vector space, any two closed set-valued mappings T, S : X paired right arrows X, with nonempty and convex values, have a common fixed point whenver there exists a function phi is an element of Phi such that parallel to y - u parallel to <= phi(parallel to y - x parallel to, parallel to u - x parallel to), for all x is an element of X, y is an element of T (x), u is an element of S(x). Next, we prove that the same conclusion holds when at least one of the set-valued mappings is lower semicontinuous with nonempty closed and convex values. Our common fixed point theorems turn out to be useful for a unitary treatment of several problems from optimization and nonlinear analysis (quasi-equilibrium problems, quasi-optimization problems, constrained fixed point problems, quasi-variational inequalities).
引用
收藏
页码:1893 / 1905
页数:13
相关论文
共 50 条
  • [41] FIXED-POINT THEOREMS FOR SET-VALUED MAPPINGS AND EXISTENCE OF BEST APPROXIMANTS
    PROLLA, JB
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1983, 5 (04) : 449 - 455
  • [42] The Measurability of Carathéodory Set-Valued Mappings and Random Fixed Point Theorems
    E. Tarafdar
    P. Watson
    Xian-Zhi Yuan
    [J]. Acta Mathematica Hungarica, 1997, 74 : 309 - 319
  • [43] Fixed point theorems for set-valued contractions
    Amini-Harandi A.
    Fakhar M.
    Hajisharifi H.R.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2013, 62 (3) : 367 - 377
  • [44] Related fixed point theorems for mappings and set valued mappings on two metric spaces
    Chourasia, Vijendra Kumar
    Fisher, Brian
    [J]. FIXED POINT THEORY AND APPLICATIONS, VOL 6, 2007, 6 : 35 - +
  • [45] A generalization of antipodal point theorems for set-valued mappings
    Shitanda, Yoshimi
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2010, 39 (02) : 217 - 238
  • [46] A Set-Valued Fixed Point Theorem for Nonexpansive Mappings in Partially Ordered Ultrametric and Non-Archimedean Normed Spaces
    Mamghaderi, Hamid
    Masiha, Hashem Parvaneh
    [J]. THAI JOURNAL OF MATHEMATICS, 2020, 18 (04): : 1979 - 1982
  • [47] Some new fixed point theorems for single and set-valued admissible mappings in Menger PM-spaces
    Zhaoqi Wu
    Chuanxi Zhu
    Xiaozhi Zhang
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 755 - 769
  • [48] Some new fixed point theorems for single and set-valued admissible mappings in Menger PM-spaces
    Wu, Zhaoqi
    Zhu, Chuanxi
    Zhang, Xiaozhi
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 755 - 769
  • [49] A local fixed point theorem for set-valued mappings on partial metric spaces
    Benterki, Abdessalem
    [J]. APPLIED GENERAL TOPOLOGY, 2016, 17 (01): : 37 - 49
  • [50] Related fixed point theorems for set valued mappings on two metric spaces
    Jain, S
    Jain, RK
    Fisher, B
    [J]. FIXED POINT THEORY AND APPLICATIONS, VOL 4, 2003, : 149 - 157