Two-dimensional solitary wave solution to the quadratic-cubic nonlinear Schrodinger equation

被引:0
|
作者
Phibanchon, Sarun [1 ]
Rattanachai, Yuttakarn [2 ]
机构
[1] Burapha Univ, Fac Educ, 169 Longhardbangsaen Rd, Muang 20131, Chonburi, Thailand
[2] Rajamangala Univ Technol Isan, Fac Sci & Liberal Arts, 744 Saranarai Rd, Muang 30000, Nakorn Ratchasi, Thailand
关键词
ITERATION METHOD; PROPAGATION;
D O I
10.1088/1742-6596/1290/1/012023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Madelung fluid transformation is applied to find the link between the modified Korteweg-de Vries and the quadratic-cubic nonlinear Schrodinger equation. The two-dimensional solitary wave solution of the quadratic-cubic nonlinear Schrodinger equation will be determined by the Petviashvili method. This solution will be used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Accurate sets of solitary solutions for the quadratic-cubic fractional nonlinear Schrodinger equation
    Attia, Raghda A. M.
    Khater, Mostafa M. A.
    El-Sayed Ahmed, A.
    El-Shorbagy, M. A.
    [J]. AIP ADVANCES, 2021, 11 (05)
  • [2] A meshfree method for the solution of two-dimensional cubic nonlinear Schrodinger equation
    Abbasbandy, S.
    Ghehsareh, H. Roohani
    Hashim, I.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (06) : 885 - 898
  • [3] Instabilities in the two-dimensional cubic nonlinear Schrodinger equation
    Carter, JD
    Segur, H
    [J]. PHYSICAL REVIEW E, 2003, 68 (04):
  • [4] Chirped self-similar waves for quadratic-cubic nonlinear Schrodinger equation
    Pal, Ritu
    Loomba, Shally
    Kumar, C. N.
    [J]. ANNALS OF PHYSICS, 2017, 387 : 213 - 221
  • [5] Chaotic solitons in the quadratic-cubic nonlinear Schrodinger equation under nonlinearity management
    Fujioka, J.
    Cortes, E.
    Perez-Pascual, R.
    Rodriguez, R. F.
    Espinosa, A.
    Malomed, B. A.
    [J]. CHAOS, 2011, 21 (03)
  • [6] Modulation of localized solutions in quadratic-cubic nonlinear Schrodinger equation with inhomogeneous coefficients
    Cardoso, Wesley B.
    Couto, Hugo L. C.
    Avelar, Ardiley T.
    Bazeia, Dionisio
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 474 - 483
  • [7] Optical solitons and modulation instability analysis to the quadratic-cubic nonlinear Schrodinger equation
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (01): : 20 - 33
  • [8] Further innovative optical solitons of fractional nonlinear quadratic-cubic Schrodinger equation via two techniques
    Islam, Md. Tarikul
    Aktar, Mst. Armina
    Gomez-Aguilar, J. F.
    Torres-Jimenez, J.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (10)
  • [9] An efficient numerical technique for solution of two-dimensional cubic nonlinear Schrodinger equation with error analysis
    Shivanian, Elyas
    Jafarabadi, Ahmad
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2017, 83 : 74 - 86
  • [10] Dynamics of Jacobi elliptic and soliton solutions for the modified quadratic-cubic nonlinear Schrodinger equation
    Pal, Ritu
    Kaur, Harneet
    Goyal, Amit
    Kumar, C. N.
    [J]. JOURNAL OF MODERN OPTICS, 2019, 66 (05) : 571 - 579