Chaotic solitons in the quadratic-cubic nonlinear Schrodinger equation under nonlinearity management

被引:95
|
作者
Fujioka, J. [1 ,5 ]
Cortes, E. [2 ]
Perez-Pascual, R. [3 ]
Rodriguez, R. F. [1 ,5 ]
Espinosa, A. [1 ]
Malomed, B. A. [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Quim Fis, Inst Fis, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Dept Sistemas Complejos, Inst Fis, Mexico City 04510, DF, Mexico
[4] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[5] Univ Nacl Autonoma Mexico, FENOMEC, Mexico City, DF, Mexico
关键词
NUMERICALLY INDUCED CHAOS; SOLITARY-WAVE SOLUTIONS; VARIATIONAL APPROACH; EMBEDDED SOLITONS; OPTICAL-FIBER; INTEGRABLE SYSTEMS; VECTOR SOLITON; PROPAGATION; DISPERSION; DYNAMICS;
D O I
10.1063/1.3629985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the response of rational and regular (hyperbolic-secant) soliton solutions of an extended nonlinear Schrodinger equation (NLSE) which includes an additional self-defocusing quadratic term, to periodic modulations of the coefficient in front of this term. Using the variational approximation (VA) with rational and hyperbolic trial functions, we transform this NLSE into Hamiltonian dynamical systems which give rise to chaotic solutions. The presence of chaos in the variational solutions is corroborated by calculating their power spectra and the correlation dimension of the Poincare maps. This chaotic behavior (predicted by the VA) is not observed in the direct numerical solutions of the NLSE when rational initial conditions are used. The solitary-wave solutions generated by these initial conditions gradually decay under the action of the nonlinearity management. On the contrary, the solutions of the NLSE with exponentially localized initial conditions are robust solitary-waves with oscillations consistent with a chaotic or a complex quasiperiodic behavior. (C) 2011 American Institute of Physics. [doi:10.1063/1.3629985]
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Optical solitons and modulation instability analysis to the quadratic-cubic nonlinear Schrodinger equation
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (01): : 20 - 33
  • [2] Diverse optical solitons to nonlinear perturbed Schrodinger equation with quadratic-cubic nonlinearity via two efficient approaches
    Ur Rehman, Shafqat
    Ahmad, Jamshad
    [J]. PHYSICA SCRIPTA, 2023, 98 (03)
  • [3] Optical solitons with generalized quadratic-cubic nonlinearity
    Dan, Jayita
    Garai, Sudip
    Ghose-Choudhury, A.
    Biswas, Anjan
    Yildirim, Yakup
    Alshehri, Hashim M.
    [J]. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2022, 16 (9-10): : 450 - 452
  • [4] Further innovative optical solitons of fractional nonlinear quadratic-cubic Schrodinger equation via two techniques
    Islam, Md. Tarikul
    Aktar, Mst. Armina
    Gomez-Aguilar, J. F.
    Torres-Jimenez, J.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (10)
  • [5] Optical solitons and conservation laws with quadratic-cubic nonlinearity
    Triki, Houria
    Biswas, Anjan
    Moshokoa, Seithuti P.
    Belic, Milivoj
    [J]. OPTIK, 2017, 128 : 63 - 70
  • [6] Optical solitons in nonlinear negative-index materials with quadratic-cubic nonlinearity
    Ekici, Mehmet
    Zhou, Qin
    Sonmezoglu, Abdullah
    Moshokoa, Seithuti P.
    Ullah, Malik Zaka
    Triki, Houria
    Biswas, Anjan
    Belic, Milivoj
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 109 : 176 - 182
  • [7] ENVELOPE SOLITONS IN TRANSMISSION-LINE WITH QUADRATIC-CUBIC NONLINEARITY
    VOLYAK, KI
    MARCHENKO, VF
    STRELTSOV, AM
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1988, 31 (11): : 1331 - 1337
  • [8] An analytical method for soliton solutions of perturbed Schrodinger's equation with quadratic-cubic nonlinearity
    Ghanbari, Behzad
    Raza, Nauman
    [J]. MODERN PHYSICS LETTERS B, 2019, 33 (03):
  • [9] Chirped self-similar waves for quadratic-cubic nonlinear Schrodinger equation
    Pal, Ritu
    Loomba, Shally
    Kumar, C. N.
    [J]. ANNALS OF PHYSICS, 2017, 387 : 213 - 221
  • [10] Solitons in magneto-optic waveguides with quadratic-cubic nonlinearity
    Zayed, Elsayed M. E.
    Shohib, Reham M. A.
    El-Horbaty, Mahmoud M.
    Biswas, Anjan
    Asma, Mir
    Ekici, Mehmet
    Alzahrani, Abdullah Kamis
    Belic, Milivoj R.
    [J]. PHYSICS LETTERS A, 2020, 384 (25)