Switching Control for LPV Polytopic Systems Using Multiple Lyapunov Functions

被引:0
|
作者
He Xu [1 ]
Zhao Jun [1 ]
Dimirovski, Georgi M.
Chen Chao [1 ]
机构
[1] Northeastern Univ, State Key Lab Integrated Automat Proc Ind, Shenyang 110819, Peoples R China
关键词
LPV Systems; Polytopic Parameters; Multiple Lyapunov Functions; LMIs; VARYING SYSTEMS; PARAMETER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the switching control for a linear parameter varying (LPV) polytopic system using multiple Lyapunov functions to improve the system's H-infinity performance. For the large range of parameter varying, we divide the parameter region into small subregions and find a suitable Lyapunov function for each parameter subregion. Under the average dwell time switching logic, a sufficient Linear Matrix inequality (LMI) condition is proposed to guarantee the performance. The proposed control scheme is applied to an active magnetic bearing system.
引用
下载
收藏
页码:1771 / 1776
页数:6
相关论文
共 50 条
  • [31] Robust H∞ control of uncertain switched delay systems using multiple Lyapunov functions
    Lian, Jie
    Dimirovski, Georgi M.
    Zhao, Jun
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1582 - +
  • [32] Parameter-dependent Lyapunov functions for time varying polytopic systems
    Colaneri, P
    Geromel, JC
    ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 604 - 608
  • [33] Safe Protecting Switching Control for Aeroengines Based on Multiple Lyapunov Functions Method
    Chen Chao
    Yu Daren
    Bao Wen
    Zhao Jun
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 5953 - 5957
  • [34] Parameter-dependent Lyapunov functions for state-derivative feedback control in polytopic linear systems
    da Silva, E. R. P.
    Assuncao, E.
    Teixeira, M. C. M.
    Faria, F. A.
    Buzachero, L. F. S.
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (08) : 1377 - 1386
  • [35] Global Event-Triggered Funnel Control of Switched Nonlinear Systems via Switching Multiple Lyapunov Functions
    Long, Lijun
    Wang, Fenglan
    Chen, Zhiyong
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, : 1 - 11
  • [36] Comprehensive Lyapunov functions for linear switching systems
    Protasov, Vladimir Yu.
    AUTOMATICA, 2019, 109
  • [37] Robust switching control design using Lur'e Lyapunov functions
    Ndoye, Aboubacar
    Tregouet, Jean-Francois
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (07) : 4626 - 4649
  • [38] Model reference adaptive control of polytopic LPV systems an alternative approach to adaptive control
    Miyasato, Yoshihiko
    PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL, 2006, : 382 - 387
  • [39] Receding Horizon Control Strategies for Constrained LPV Systems Based on a Class of Nonlinearly Parameterized Lyapunov Functions
    Garone, Emanuele
    Casavola, Alessandro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (09) : 2354 - 2360
  • [40] Discrete-Time State-Feedback Switching LPV Control with Separate Lyapunov Functions for Stability and Local Performance
    Zhao, Pan
    Nagamune, Ryozo
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2023 - 2028