Non-existence of spontaneous symmetry breaking of excitons in multiple-quantum-wells

被引:0
|
作者
laGuillaume, CBA [1 ]
机构
[1] UNIV PARIS 06,F-75251 PARIS 05,FRANCE
关键词
quantum wells; semiconductors;
D O I
10.1016/S0038-1098(96)00701-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
From symmetry argument, it is shown that spontaneous symmetry breaking of excitons in multiple-quantum-wells cannot exist. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:847 / 848
页数:2
相关论文
共 50 条
  • [31] Spontaneous conformal symmetry breaking and quantum quadratic gravity
    Kubo, Jisuke
    Kuntz, Jeffrey
    [J]. PHYSICAL REVIEW D, 2022, 106 (12)
  • [32] Spontaneous symmetry breaking in twisted noncommutative quantum theories
    Balachandran, A. P.
    Govindarajan, T. R.
    Vaidya, Sachindeo
    [J]. PHYSICAL REVIEW D, 2009, 79 (10):
  • [33] Spontaneous symmetry breaking in single and molecular quantum dots
    Yannouleas, C
    Landman, U
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (26) : 5325 - 5328
  • [34] SPONTANEOUS SYMMETRY-BREAKING IN QUANTUM FRUSTRATED ANTIFERROMAGNETS
    AZARIA, P
    DELAMOTTE, B
    MOUHANNA, D
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (16) : 2483 - 2486
  • [35] Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure
    Iida, Daisuke
    Niwa, Kazumasa
    Kamiyama, Satoshi
    Ohkawa, Kazuhiro
    [J]. APPLIED PHYSICS EXPRESS, 2016, 9 (11)
  • [36] Non-existence of a phase transition for penetrable square wells in one dimension
    Fantoni, Riccardo
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [37] MULTIPLE PRODUCTION OF PARTICLES IN MODELS WITH SPONTANEOUS SYMMETRY BREAKING
    KRIVE, IV
    FOMIN, PI
    CHUDNOVSKII, EM
    [J]. JETP LETTERS, 1977, 25 (04) : 196 - 199
  • [38] Spontaneous R-symmetry breaking with multiple pseudomoduli
    Curtin, David
    Komargodski, Zohar
    Shih, David
    Tsai, Yuhsin
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [39] On the non-existence of stepped-pressure equilibria far from symmetry
    Qu, Z. S.
    Hudson, S. R.
    Dewar, R. L.
    Loizu, J.
    Hole, M. J.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (12)
  • [40] SYMMETRY AND NON-EXISTENCE OF SOLUTIONS FOR A NONLINEAR SYSTEM INVOLVING THE FRACTIONAL LAPLACIAN
    Zhuo, Ran
    Chen, Wenxiong
    Cui, Xuewei
    Yuan, Zixia
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) : 1125 - 1141