Extended Voronoi cell finite element method for multiple crack propagation in brittle materials

被引:4
|
作者
Li, Huan [1 ,2 ]
Guo, Ran [1 ]
Cheng, Heming [1 ]
机构
[1] Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Agr Univ, Sch Mech & Elect Engn, Kunming 650201, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended Voronoi cell finite element method; Williams expansion; Crack propagation; Maximum energy release rate; Remeshing; Brittle material; STRESS INTENSITY FACTORS; REINFORCED COMPOSITES; MICROSTRUCTURES; MODEL; TIP; FRACTURE; GROWTH;
D O I
10.1016/j.tafmec.2020.102741
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper introduces a new extended Voronoi cell finite-element method (X-VCFEM) for modelling the propagation of multiple cracks in brittle materials. The direction of the crack propagation is adaptively determined in terms of the maximum energy release rate near the crack tip, and we apply a remeshing strategy that a node at a last incremental crack tip in the crack advance process is replaced by a node pairs to realize the gradual crack propagation. In order to accurately capture crack-tip stress concentrations, some singular stress terms of Williams expansion in the vicinity of crack tips are introduced in the assumed stress hybrid formulation which also includes the polynomial terms and the reciprocal terms. Then several numerical examples are used to demonstrate the effectiveness and accuracy of X-VCFEM enriched by some singular stress terms of Williams expansion by comparing X-VCFEM results with those computed by the commercial finite element package ABAQUS or established results in the literature. At last, two numerical examples are given to simulate multiple crack propagation in brittle media. The effects of morphological distributions such as length, orientation and dispersion on the crack propagation are studied. It is obvious that the X-VCFEM has great advantage of analyzing large regions of the microstructure with multiple growing and interacting cracks.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Crack propagation with the extended finite element method and a hybrid explicit-implicit crack description
    Fries, Thomas-Peter
    Baydoun, Malak
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (12) : 1527 - 1558
  • [32] A Hybrid Finite Element-Scaled Boundary Finite Element Method for Multiple Cohesive Crack Propagation
    Ooi, E. T.
    Yang, Z. J.
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [33] Modeling of fatigue crack in particle reinforced composites with Voronoi cell finite element method
    Guo, Ran
    Zhang, Wenyan
    Tan, Tao
    Qu, Benning
    INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, 2012, 31 : 288 - 296
  • [34] Finite element simulation of dynamic crack propagation in brittle PMMA plates
    Zhang, Z.-Y. (zzylzh815@sina.com), 1600, China Ordnance Industry Corporation (35):
  • [35] Voronoi cell finite element method for heat conduction analysis of composite materials
    Chen, Siqi
    Hu, Changhao
    Tian, Jingjie
    Tan, Dawen
    Gong, Yuqiang
    Xia, Fan
    Ning, Shaoqing
    Zhang, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] Analysis of interface crack in piezoelectric materials using extended finite element method
    Pamnani, Gulab
    Bhattacharya, Somnath
    Sanyal, Subhashish
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2019, 26 (17) : 1447 - 1457
  • [37] Brittle and ductile crack propagation using automatic finite element crack box technique
    Lebaillif, D.
    Recho, N.
    ENGINEERING FRACTURE MECHANICS, 2007, 74 (11) : 1810 - 1824
  • [38] Peridynamic modelling and simulation for multiple crack propagation in brittle materials
    Qin H.-Y.
    Liu Y.-M.
    Huang D.
    Huang, Dan (danhuang@hhu.edu.cn), 2018, Zhejiang University (52): : 497 - 503
  • [39] Modeling of Brittle Crack Propagation using the Virtual Element Method
    Hussein, A.
    Hudobivnik, B.
    Wriggers, P.
    BAUINGENIEUR, 2019, 94 (04): : 147 - 154
  • [40] 3D crack propagation with cohesive elements in the extended finite element method
    Ferte, G.
    Massin, P.
    Moes, N.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 300 : 347 - 374